

Ę

A MARTIN CONTRACTOR

دوره آموزشی

آشنایی با تست و دستورالعمل جوشکاری WPS/PQR مطابق با استاندارد ASME

زمان : بهمن ۱۳۷۹ مکان : دانشکده مکانیک دانشکاه صنعتی امیرکبیر

化推行 的现在

بهتلس ليبا هنرمنديلي

آشنایی با تست و

شرکت کاوش همایش

5

C

دوره لموزننى

فهرست مندرجات

فصل اول - مروری بر فرایندهای جوشکاری 1 فصل دوم – مشخصات روش جوشکاری WPS ۳۲ فصل سوم – گزارش کیفیت روش جوشکاری PQR ۷۳ 97 فصل چهارم - ضمائم

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

آشنایی با تست و دستو *ر*العمل جو شکا*ر*ی

مقدمه

برای تولید محصولی مطلوب ، تجربه در تولید همواره یکی از عوامل مهم به حساب می آید. تجربیات تولید در کشورهای صنعتی بصورت استاندارد مکتوب شده اند تا با استفاده از آنها خطاهای گذشته تکرار نشود و علاوه بر صرفه جویی در وقت و مواد اولیه باعث بالا رفتن کیفیت در تولید شوند. برطبق کلیه استانداردهای صنعتی ، قبل از هر گونه عملیات جوشکاری تهیه روش جوشکاری (WPS) و ثبت آزمایشات و تائید آن (PQR) از حداقل پیش نیازهای شروع جوشکاری است. مشخصات روش جوشکاری (PQR) از حداقل پیش نیازهای شروع جوشکاری است. اطلاعات لازم و مربوط به آن را بـه تفصیل بیان می کنـد. در حقیقت مشخصات روش جوشکاری یک اتصال و محدوده و مقادیر متغیرهای دخیل در فرایند و مشخصات مواد پایه و فلز پرکننده را تعیین می کند. می توان گفت مشخصات روش جوشکاری کنترل کننده و متضمن کیفیت قطعه جوشکاری شـده است. بنابراین هر اتصال نیاز به یک مشخصات روش جوشکاری (UPS) دارد و آزمایشات کنـترل کیفی که براساس استانداردها برای هر اتصال تهیه و ارائه می شود، نشان دهنده اجـرای صحیح روش جوشکاری پیشنهادی است.

لازم به ذکر است که استاندارد و مشخصات کیفیت یک قطعه جوشکاری شده به هنگام طراحی ، براساس کدهای مختلف کیفیت بیان می شود. این کد و درجه بندی بسته به حساسیت کار، شاریط و امکانات سازنده و کشور تولید کننده متغیر است. لذا روش جوشکاری و بدنبال آن کناترل کیفیات نیز براساس همان استاندارد انجام می پذیرد.

در این دوره ، در فصل اول بطور فشرده ، فرایندهای جوشکاری متداول را بررسی می کنیم. سپس در فصل فصل دوم به مشخصات روش جوشکاری(WPS)و نحوه تعیین متغیرهای مختلف آن می پردازیم. فصل سوم را به بررسی گزارش کیفیت روش جوشکاری (PQR) اختصاص داده ایم. در بخش ضمائم نیز نمونه هایی از جداول و اطلاعات مورد نیاز ارائه شده است.

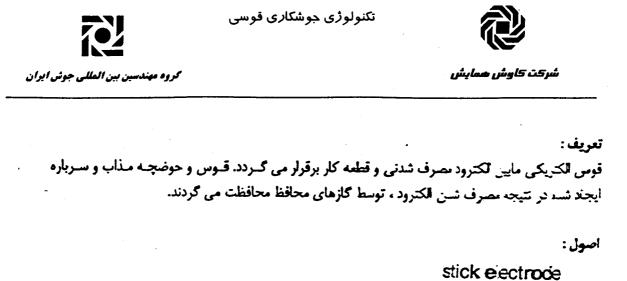
در پایان لازم میدانم از دوست ارجمندم جناب آقای مهندس سعید محبوبی پور که همواره مشوقم بوده و همراهیشان هماره راهگشا، تشکر و قدردانی نمایم.

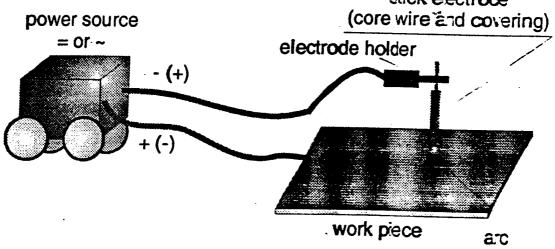
نيما هنرمنديان

ا شنایی با تست و

شرکت کاوش همایش

(


C



.كروه مهندسين بين المللي جوش ايران/ ١٣٧٩

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره اموزنني

قطییت لکترود پوشش دار در حالت استفاده از برق مستقیم (DC) : الکتروده ی اسیدی و روتیلی بید به قطب منفی متصل گردند. الکترود های نوع باری و تمام لکترودهای پوشش دار آلیاژ بالا باید به قطب مثبت متصل گردند.

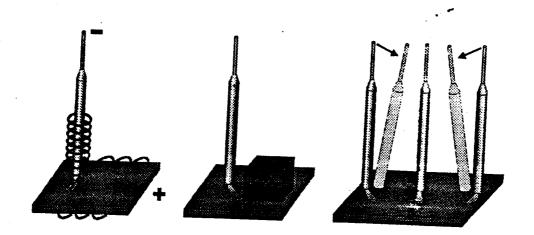
> شروع و نوع افروزنی قوس : انتقال قصرات بصورت أتصال کوتاه صورت می پذیرد.

اتواع منبع تامين ترزي: ۱. کنورتیر : تولید وق مستقیم (DC) می کند ۲. رکتی فایو (یکسوکتنده) : تولید برق مستقیم (DC) می کند. ۲. ترانس : توليد برق متناوب (AC) مي كند.

دوره لموزشی

(

(


£.,

شرکت کاوش همایش

پدیده وزش قوس : عبور جریان الکتریکی در الکترود ، قطعه کار و کابل زمینی یک حوزه مغناطیسی را بوجود می آورد که بصورت دابره های متوالی عمود بر عبور جریان می باشند . هنگامیکه حوزه اطراف قطعه کار یا الکترود نامتعادل باشد ، قوس بطرفی که تمرکز حوزه بیشتر است انحراف می یابد. این انحراف از حالت حقیقی و نرمال به وزش قوس (Arc Blow) مشهور است و بیشتر در جریان یکنواخت رخ می دهد زیرا گرچه حوزه مغناطیسی از نظر جهت ثابت است ولی در جریان متناوب بعلت تغییر جهت جریان الکتریکی در هر نیم سیکل این عمل کمتر اتفاق افتاده و یا ناچیز است .

در مواقعیکه [•] وزش قوس [•] زیاد باشد ، جوش کامل بوجود نیامده و همراه با جرقه ها و ترشــحات زیـادی مـی باشد.

راد های جلوگیری و کاهش وزئ قوس عبارت است از :

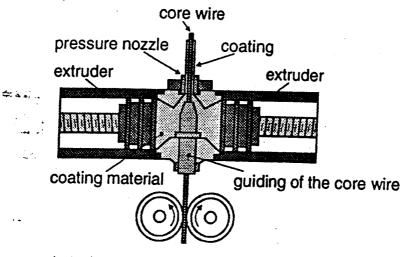
- تغییر نوع جریان الکتریکی از حالت یکنواخت به متناوب
 - کاهش شدت جریان اکتریکی

دوره لموزشى

- کاهش طول قوس الکتریکی تا حد ممکن
- در صورت امکان پیچیدن کابل متصل به زمین به قطعه کار (که در اینصورت حوزه مغناطیسی دیگری ایجاد شده و حوزه مغناطیسی قدیم را خنثی می کند) .
- تغییر محل کابل زمین به مکانهای دورتر از محل جوش ، در انتهای جوش و یا در محل انجام جوش بطرف نقطه جوش بزرگ .

مهندس سميد محبوبي يور

مهتدس سمید محبوبی یور


شرکت کاوش همایش

نحوه ساخت الكترود های پوشش دار:

E)

0

دوره اموزشی

electrode press with two bulbs

نحوه تغذیه پرسها : تغذیه پرسها عموما بصورت مکانیکی و یا هیدرولیکی انجام می گیرد. توجه : علاقمندان در مورد سیم لخت کشش یافته و قطع شده در طولهای مناسب برای مصارف جوشکاری می توانند به استاندارد DIN668 مراجعه نمایند. مواد چسب مورد استفاده : عموما از ترکیب K2SiO3 و Na2SiO3 استفاده می گردد. نسبت پوشش (Cover Ratio) :

بازده الکترود : میزان بازده و راندمان یک الکترود بر اساس فرمول ذیل محاسبه می گردد :

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش مي باشد 🚬 مر الله الله الله الله الله الله الله ال

مهندس سميد محبوبي يور

rŝ.,

شرکت کاوش همایش

نحوه شناسایی الکترودها : برای شناسایی الکتردها می تمان به علائیم حیاب

برای شناسایی الکترودها می توان به علاقم چاپ شده روی پوشش یا رنگهای ویژه در انتهای الکترودها مراجعه کرد.

نحوه شناسایی الکترودها بر اساس استاندارد امریکا :

انجمن جوشکاری ایالات متحده امریکا (AWS) ، قواعدی در مورد شناسایی و طبقه بندی الکترودها وضع کرده که مورد تصویب و تایید انجمن امریکایی آزمایش مـواد (ASTM) قـرار گرفته است . در طبقه بنـدی AWS ، هر الکترود با یک حرف و یک عدد چهار یا پنج رقمی مشخص می شود : ۱ . حرف سمت چپ در مورد جوش گاز G و در مورد جوش قوسی با الکترود دستی E می باشد.

۲. دو رقم سمت چپ از عددهای چهار رقمی (یا سه رقم سمت چپ از عددهای پنج رقمی) مقاومت کششیی فلز جوش را بر حسب هزار پوند بر اینج مربع تعیین می کند.

۳. دومین رقم از سمت راست ، حالت جوشکاری را که الکترود برای آن طراحی و ساخته شده است ،بیان می کند . الکترودهایی که دومین رقم سمت راست آنها عدد یک است (XX1X) برای جوشکاری در تمام حالتها (تخت ، افقی ، قائم و بالای سر) مناسب هستند. الکترودهایی که دومین رقم سمت راست آنها عدد ۲ می باشد (XX2X) برای جوشکاری در حالتهای تخت و افقی و الکترودهایی که دومین رقم از سمت راست آنها عدد ۲ می عدد ۳ می باشد (XX2X) مناسب همتند. الکترودهایی که دومین رقم سمت راست آنها عدد ۲ می دومین رقم سمت راست آنها عدد ۲ می عدد ۲ می باشد (XX2X) مالای سر) مناسب همتند. الکترودهایی که دومین رقم از سمت راست آنها عدد ۲ می باشد (XX2X) مالای سر) مناسب همتند. الکترودهایی که دومین رقم از سمت راست آنها عدد ۲ می باشد (XX2X) مالای سر) مالوی در حالتهای تخت و افقی و الکترودهایی که دومین رقم از سمت راست آنها عدد ۳ می باشد.

۴. رقم اول سمت راست از این اعداد معرف نوع برق ، نوع روپوش ، مقدار نفوذ قوس و سایر خصوصیات گـرده جوش بر اساس جدول ذیل می باشد :

توع جریان برق (الف)	رويېش	رقم جهارم
جريان مستقيم قطب معكوس (ج)(د) متناوب يا مستقيم (ج)(د)	پرسلولز، سديم (ب)، پراکسيد آهن (ج)	•
متناوب يا مستقيم قطب معكوس	پرسلولز ، پتاسیم	١
متناوب يا مستقيم (ه) قطب معكوس	پرتيتان ، سديم	٢
متناوب یا مستقی م (۵) _	پرتیتان ، پتالیم	٢
متناوب یا مستقی م (م)	پودر آهن ، تيتاني	۴
مستقيم قطب معكوسي .	کم هيدروژن ، سديم	۵
متناوب يا مستقيم قطب معكوس	کم ه يدروژن پتاسيم	۶
متناوب یا مستقیم (د)	پودر آهن ، اکسید آهن	Y
متناوب يا مستقيم قطب معكوس	پودر آهن ، کم هيدروژن	٨

الف : AC = جریان متناوب، DC = جریان مستقیم (دائم) ، DCEN = DCRP = جریان مستقیم قطب معکوس DCEP = DCSP = جریان مستقیم قطب مستقیم ب) وقتی که رقم سوم ۱ است .

ج) وقتی که رقم سوم ۲ است .

دوره اموزشى

د) هر نوع قطب برای جوشهای تخت ، جریان مستقیم قطب مستقیم برای جوشهای افقی گوشه ای .

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

P

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

(

0

دوره اموزشى

ه) هر نوع قطب نحود شناسایی الکترودها بر اساس استاندارد اروپای متحد (EN) : الکترودهای جوشکاری در استاندارد شماره EN499 به صورت ذیل قابل شناسایی می باشند : مثال : EN499 - E46 3 1Ni B 54 H5 EN 499 : شماره استاندارد E : مشخصه الكترود 46 : مشخص کننده حداقل استحکام تسلیم الکترود ، مراجعه به جدول شماره ۱ 3 : مشخص کننده درجه حرارت انجام تست ضربه ، مراجعه به جدول شماره ۲ INi : مشخص کننده ترکیب شیمیایی ، مراجعه به جدول شماره ۳ B : مشخص كننده نوع روپوش أنكترود 5 : نرخ رسوب و نوع جريان الكتريكي ، مراجعه به جدول ۴ 4 : وضعیت جوشکاری ، مراجعه به جدول ۵ H5 : میزان مجاز هیدروژن موجود در انکترود ، مراجعه به جدول ۶

جدول شماره ۱

عدد مشخصه	حداقل مفاومت تسليم (N/mm2)	استحکام کششی (N/mm²)	درصد ازدیاد طول ٪
35	355	440 - 570	22
38	380	470 - 600	20
42	420	500 - 640	20
46	460	530 - 680	20
50	500	560 - 720	18

جدول شماره ۲

مشخصه	دمای آزمایش شکست با ۲۷ ژول
Z	تست شکستی انجام نشده است
A	+20
	0
3	-20
4	-30
5	-40
6	-50
Ū	-60

كروه مهندسين بين المللي جوش ايران/ ١٢٧٩

حق جابٌ و تكثير ، محفوظ و متعلق به شركت كاوش همايش من بإشد

مهندس سميد محبوبي يور

R

کروہ مہندسین ہیں المللی جوش ایران

Ç.

شرکت کاوش همایش

: ٣	جدول
-----	------

الياژ	Mn	Мо	Ni
بدون علامت اختصاري	2.0		
Мо	1.4	0.3 - 0.6	
MnMo	>1.4 - 2.0	0.3 - 0.6	
lNi	1.4		0.6 - 1.2
2Ni	1.4		1.8 - 2.6
3Ni	1.4		>2.6 - 3.8
Mn1Ni	>1.4 - 2.0		0.6 - 1.2
INiMo	1.4	0.3 - 0.6	0.6 - 1.2
Z	هر نوع ترکیب شیمیایی دیگر		

جدول ۴:

نوع جريان الكتريكي		درصد نرخ رسوب (٪)	علامشخصه	
جريان متناوب و مستقيم		≤105 ≤105	1	
جريان مستقيم		3105	2	
جريان متناوب و مستقيم		>105 ≤125 >105 ≤125	3	
جريان مستقيم		>103 \$125	+	
جریان متناوب و مستقیم جریان مستقیم		>125 ≤160 >125 ≤160	5 6	
جریان متناوب و مستقیم جریان مستقیم		>160 >160	7 8	

جدول ۵:

قابل کاربرد در وضعیت	عدد مشخصه
مام وضعیت ها	5 1
مام وضعيت ها بجز وضعيت سرپا <u>سن</u>	5 2
بوشهای پخ دار در حالت تخت ، جوش گوشه ای در حالت تخت و افقی	. 3
بوشهای پخ دار در حالت تخت ، جوش گوشه ای در حالت تخت	. 4
ضعيت سرپايين و حالت 3	5

شرکت کاوش همایش

€

C

میندسین بین المللی حوش ایران

· .	جدول ۶:
مشخصه	میزان هیدورژن بر حسب میلی لیتر در ۱۰۰ گرم فلز جوش
Н5	5
H10	10
H15	15

توجه : علاقمندان برای آشنایی با نحوه شناسایی الکترودها در استانداردهای انگلیسی ، سازمان بیـن المللـی استاندارد ، آلمانی ، فرانسوی ، ایتالیایی و ژاپنی می توانند به کتاب " الکترود " نوشته آقای مهندس ادب آوازه و برای آشنایی با الکترودهای ساخت داخل کشور به کاتالوگ های این شرکتها مراجعه نمایند.

بازیخت الکترودها : برای آشنایی با میزان بازیخت الکترودها بر اساس شرکت سازنده و استاندارد مورد استفاده در کار ، اعداد و زمانهای متفاوتی قید شده است . بطور مثال در استاندارد اروپای متحد (EN) آمده است : الف) برای استفاده از الکترودهای اسیدی و رتیلی ، باید آنها را قبل از استفاده در دمای ۸۰ الی ۱۲۰ درجه سانتی گراد تا ۲ ساعت بازیخت نمود. ب) برای استفاده از الکترودهای بازی ، باید آنها را قبل از استفاده در دمای بیشتر از ۲۰۰ درجه سانتی گراد بین ۲ تا ۴ ساعت بازیخت نمود.

مثالهایی از ابعاد و میزان جریان مورد نیاز برای استفاده از الکترودهای پوشش دار :

قطر d ، mm	۲/۰	۲/۵	۲/۲	¥/.	۵/۰	<i>۶1.</i>
طول L ،mm	10	۳۵۰	5040-	50-40.	40.	40.
جریان ۱، ۸	47.	01	910.	177-	1222.	11-15.
قلون سرلگشتی برای حداقل A	۲.•	' d		۳•* d		70 * d
قلون سرلگشتی برای حداکثر A	۴.*	đ		۵+* d		۶۰* đ

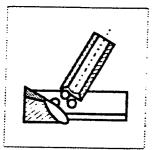
وظايف پوشش الكترود:

۱. اصلاح و تقویت قوس الکتریکی : الف) افروزش و شروع قوس بهتر ب) تصحیح خواص فلز جوش ۲. ایجاد سرباره (گل جوش) : الف) تاثیرگذاری بر روی اندازه و نوع قطرات ایجاد شده

مهندس سنید محبوبی یور		، المللي جوش ايران/ ١٢٧٩	گروه مهندسین بیر		دوره اموزشی
and the second second	ا مائندنیمی است. اورانی	و متعلق به شرکت کاوش همایش می باشا	خق چاپ و تکثیر ، محفوظ	• • • • • • • • • • • • • • •	

شرکت کاوش همایش

ب) محافظت از قطرات ایجاد شده و فلز جوش ذوب شده در مقابل تاثیرات منفی هوا ج) کمک به شکل گیری بستر و فرم مناسب پروفیل جوش د) محافظت در برابر سرد شدن سریع فلز جوش ۳. ایجاد اتمسفری مناسب با ایجاد گاز محافظ : الف) با استفاده از مواد آلی ب) با استفاده از ترکیبات کربنات ۲. اکسید زدایی و کمک به افزایش اثر عناصر آلیاژی : توجه : عناصر دی اکسید کننده موجود در پوشش الکترودها ، غالبا ۲ Mn ، AL و Si می باشند.


آنالیز استاندارد اتواع الکترودهای پوشش دار :

نوع سلولزي (C)

نوع اسیدی (A)

نوع رتيلي (R)

نوع بازی (B)

•

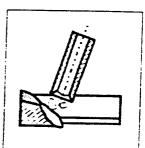
cellulose		40 %	
rutile	TiO,	20 %	
quartz	SiO,	25 %	
FeMn	Ľ	15 %	
waterglass			
nos	 slag	-	
	3		
drop transfer: medium size drops			

toughness values: good

مهتدس سميد محبوبي يور

magnetite Fe₃O 50 %
 quartz SiO 20 %
 lime stone CaCO 10 %
 FeMn 20 %
 waterglass
 solidification interval of the slag: large

drop transfer: fine size drops up to spray typed


toughness values: normal

rutile TiO₂ 45 % magnetite Fe₃O₂ 10 % quartz SiO₂ 20 % lime stone CaCO₃ 10 % FeMn 15 % waterglass

solidification interval of the slag: middle

drop transfer: medium size drops up to fine size drops

> toughness values: good

flour spar CaF, 40 % lime stone CaCO, 20 % cuarz SiO, 25 % FeMa 15 % waterglass

solidification interval of the slag: large

drop transfer: medium size drops up to large size drops

> toughness values: very good

گروه مهندسین بین المللی خوتن ایران/ ۱۳۷۹ دق جاب و تکبر ، محفوظ و منطق به شرکت کارش همایش می باشد ^{رسین}

وره اموزشی

کروہ مہندسین ہیں المللی جوش ایران

مهتدس سعيد محبوبي يور

اثر و علت افزودن ترکیبات و عناصر گوناگون به پوشش الکترودها :

تاثير بر خواص جوشكاري	مواد موجود در پوشش
افزایش ظرفیت حمل جریان - رقیق کننده سرباره (گل جوش)	
افزایش قابلیت جدا شوندگی سرباره و ظاهر پروفیل جوش- شروع قوس خوب	روتيل - TiO2
افزایش دهنده قابلیت انتقال قطرات	مگنتیت – Fe3O4
كاهش دهنده ولتاژ مورد نیاز – تشكیل دهنده سرباره و ایجاد گاز محافظ	ليمستن – CaCO3
رقیق کتنده سرباره در پوشش های بازی - ناپایدارکننده قوس	فلورواسپار – CaF2
کمک به افزایش یونیزاسیون و پایدارکننده قوس	K2O Al2O3 6SiO2
اکسیژن زدا (احیاء کننده)	FeMn / FeSi
ایجاد کننده گاز محافظ	سلولز
روغن كار (روانساز)	گل چینیAl2O3 2SiO2 2H2O
چسې	K2SiO3 / Na2SiO3

الکترودهای با پوشش سلولزی :

€

(

الکترود با پوشش سلولزی دارای قوس پر نفوذ و پرنیرو است و برای جوشکاری درتمام حالات مناسب است . معمولا این الکترودها بوسطه فقدان عناصر پایدارکننده قوس در پوشش ، فقط با جریان مستقیم و قطب مثبت (DCEP) قابل استفاده می باشند. سرباره تولید شده تقریبا قابل صرف نظر کردن است که خود براحتی از روی جوش برداشته می شود. جوش حاصل از این الکترودها دارای خواص مکانیکی خوبی است. ماده تشکیل دهنده اصلی این نوع الکترودها ، سلولز است که در حین جوشکاری تولید گاز محافظ (دود جوشکاری) می کند. این نوع الکترودها ، سلولز است که در حین جوشکاری تولید گاز محافظ (دود جوشکاری) می مای فاصله دار ناهموار می باشند. در این نوع الکترود نیازی به حرکت انبر (اسلیشن) نیست و مهره های فاصله دار ناهموار می باشند. در این نوع الکترود نیازی به حرکت انبر (اسلیشن) نیست و بسیار مناسب برای جوشکاری لوله ها و بویژه پاس ریشه هستند . این الکترودها تولید مقادیر زیاد هیدروژن می کنند که خطر تردی هیدروژن را در پی دارد. فلز جوش قبل و بعد از جوشکاری نیاز به پس گرم و پیش گرم دارد (پیش گرم برای لوله ها : ۲۰۰ – ۱۰۰ درجه سانتی گراد). اندازه قطرات جدا شونده در حد متوسط است و فیلز جوش

الكترودهاي با پوشش رتيلي :

پوشش این الکترودها دارای مقادیر قابل توجهی از ترکیبات اکسید تیتانیوم است. این الکترودهـا شـروع قـوس راحتی دارند و مخصوصا بـرای جوشـهای کوتـاه در فولادهـای معمولـی ، بـرای جوشـهای گوشـه ای ، بـرای جوشهای ورق و برای پل زنی فاصله های بزرگ در اتصال ، مناسب می باشند.

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

دوره أموزشى

تکنولوژی جوشکا*ر*ی قوسی

کروہ مہندسین ہی*ن المللی جوش ایرا*ن

شرکت کاوش همایش

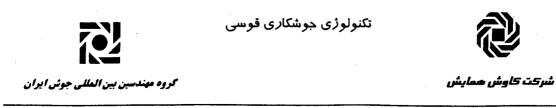
این الکترودها نسبتا به رطوبت حساسیت ندارند و جدا شدن سرباره بسیار عالی است . گرده جوش ظریف بوده و نفوذ جوش متوسط می باشد. بعلت وجود ترکیبات رتیل و عناصر یونیزه کننده در پوشش این الکترودها، می توان از جریان برق متناوب نیز استفاده کرد ولی در صورت استفاده از برق مستقیم ، ترجیحا از وضعیت DCEN استفاده شود.مقدار هیدروژن تولیدی متوسط است و کیفیت جوش نیز متوسط است . اندازه قطرات جداشونده در حد تقریبا ریز بوده و فلز جوش از تافنس خوبی برخوردار است .

الکترودهای با پوشش اسیدی :

پوشش این نوع الکترودها دلرای ترکیبات اکسیدی و کربنات های منگنز و آهان و مقادری سیلیسیم است. الکترود با پوشش اسیدی ، جوش بسیار هموار و براق تولید می کند و سرباره براحتی از روی جوش جاد می شود و به همین جهت جوشکاران تمایل زیادی برای کار با آن دارند. اندازه قطرات جداشونده بسیار ریز است و تافنس فلز جوش در حد-معمولی بوده و برای استفاده در تمامی حالات جوشکاری ، مناسب می باشند. این ناوع الکترودها در آلمان و اروپا در حال منسوخ شدن است .

الکترودهای با پوشش بازی :

دوره أموزشى

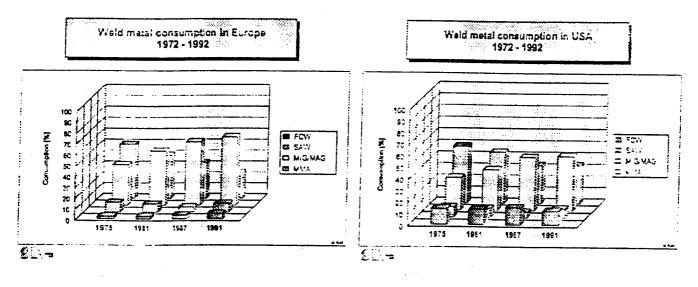

این نوع الکترودها مهمترین نوع الکترود از نظر متالورژیکی هستند. پوشش این نوع الکترودها دارای مقادیر قابل توجهی فلورید و کربنات کلسیم است. بعلت میزان رطوبت کم در پوشش الکترود ، جوش حاصل دارای حداقل مقدار هیدروژن نسبت به اتواع دیگر الکترود است.

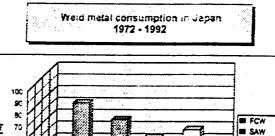
بعلت تولید فلز جوش با هیدروژن کم ، این نوع الکترود برای جوشکاری فولادهای کم آلیاژی که در مقابل ترک خوردن منطقه مجاور جوش (HAZ) حساس هستند ، بسیار مناسب است. همچنین جوش حاصل مقاومت خوبی در برابر * ترک برداشتن گرم * (Hot Cracking) دارد و برای فولادهای ضخیم و کربن بالا نیز مناسب است. فلز جوش دارای خواص مکانیکی خوب ، بویژه مقاومت به ضربه است. این نوع الکترودها سهولت کاربرد ندارند ولی در تمام وضعیت ها و با برق مستقیم (ترجیحا * PCP) و متناوب قابل کاربرد می باشند. بازیخت این الکترودها الزامی است. مقداری پودرآهن (بین ۵ تا ۵۰ درصد) به منظور بالابردن نرخ رسوب و بهتر کردن رفتار قوس ، به پوشش این الکترودها اضافه می گردد.

باید توجه کرد که در الکترودهای معمولی ، جریان الکتریکی تنها از هسته الکترود عبور می کند اما در الکترودهای پور آهنی ، پوشش الکترود نیز هدایت کننده جریان الکتریکی است که درنتیجه قوس پهن تر شده و رسوب در سطح بیشتر و با نفوذ کمتری انجام می گیرد. عبور جریان الکتریکی از پوشش الکترود ، اتصال کوتاه بین الکترود و کار را محدود کرده و مقدار ترشح را کاهش می دهد. این اثر موجب پایداری قوس و صاف تر شدن سطح فلز جوش می شود. در اثر استفاده از این نوع الکترودها ، عیب بریدگی در کناره جوش (Under رست) کمتر مشاهده می شود. اندازه قطرات جداشونده درشت بوده و تافنس ف لز جوش در حد بسیار خوبی است.

مهندس سميد محبوبي يور

.... گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹




بقديم

(

(

در شروع دهمه ۱۸۰ - ۱۹۸۰ – ۱۹۷۰ میالادی / توسعه و پیشرفتهای چشمگیری در تکنولوژی جوشکاری و برشکر می رخ داد. فرایندهای MAG / MAG بصورت جدی پایه ریزی شد و جایگزین جوشکاری ب الکنترود دستی کردید. روش لیزر برای مصارف جوشکاری و برشکاری و در پی آن سیم های توپودری توسعه یافتند. در آینده به نظر نمی رسد که تنییرات زیادی را در تکنولوژی جوشکاری و برشکاری مشاهده کنینم ، در عنوض به احتمال خیلی قوی توسعه و پیشرفتهای امروزه با تغییراتی جزیی در روشهای موجود **ادامه** خواهند یافت. با یک نگاه به فرایندهای جوشکاری تجاری امروز (مانند جوشکاری زیرپاودری ، جوشکاری قوسی با الکنترود دستی و MIG / MAG) براحتی می توان دریافت که از اواسط دهه ۱۹۷۰ میلادی یک کساهش در جوشکاری قوسی به انکترود دستی و یک افزایش در توسعه و مصرف جوشکاری قوسی بنا گناز محنافظ MIG / MAG در سراسر دنيا بوجود أمده است. (شكل ۱)

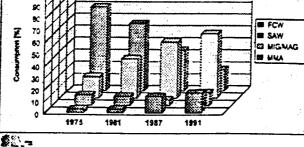


Figure 1

مهندس سميد محبوبي يور

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹ دق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد دوره اموزشی

کروہ مہندسین بین المللی جوش ایران

Ĺ

(÷

بد محبوبی بور

شرکت کاوش همایش

شکل ۱ نشاندهنده مصرف فلز پرکننده (Filler Metal) است دیگر روشها که یا بصورت کم و یا به هیچ عنوان از فلز پرکننده در آنها استفاده نمی شود (مانند جوشکاری TIG و پلاسما) در این مقایسه آورده نشده است. استفاده از جوشکاری توپودری (FCAW) در ژاپن و لروپای غربی توسعه یافت و کاربرد آن به علت راندمان و بهره وری بالا نسبت به جوشکاری قوسی با الکترود دستی (SMAW) روز به روز بیشتر و یشتر گردید.

هم اکنون از سیم های توبودری (FC) بصورت گسترده استفاده می گردد و به نظر می رسد در آینده استفاده از آنها کمتر گردد. از این سیم جوشها بصورت محدود در صنایع کشتی سازی نیز استفاده می گردد.

جوشکاری قوسی با گاز محافظ MIG/MAG:

هم اکنون جوشکاری قوسی با گاز محافظ بیشترین مصرف را در اروپای غربی ، ژاپن و ایالات متحده امریکا دارد. استفاده از این فراید در آینده نیز توسعه و پیشرفت خواهد داشت ، گرچه به نظر نمی رسد که این میزان استفاده به بزرگی و اندازه دهه ۱۹۸۰میلادی باشد. جوشکاری با گاز محافظ (MAG / MAG) بعنوان یک فرایند با بهره وری (Productivity) بالا مشهور شده است ، گرچه همواره و تحت هر شرایط نمی توان کیفیت های بالای اتصال را با ین فرایند بدست آورد. شاید مهمترین هدف اصلی در این سالها تغییر این فکر بوده است. در ژاپن این امر محقق شده است و هم اکنون جوشکاری با گاز محافظ بقدری توسعه یافته است که می توان جوشهای با کیفیت بالا ، نظیر جوشهای مخازن تحت فشار ، را با این فرایند ایجاد نمود. جوشکاری مخازن راکتورهای هست ای نیز نه تنها در ژاپن ، بلکه در تمام اروپای غربی نیز با این روش قابل انجام است. در اواسط دهه ۱۹۸۰ میلادی ، تحقیق کاملی برای افزایش بهره وری در فرایندهای MIG با افزایش سرعت جوشکاری و نرخ رسوب انجام گردید. این امر با تحقیقات با ارزشی برای توسعه منابع انرژی ، تورج ها محازن راکتورهای هست ای نیز نه تنها در ژاپن ، بلکه در تمام اروپای غربی نیز با این روش قابل انجام است. و گازهای محافظ ادامه یافت. در پایان این تحقیقات ، روش جوشکاری با تر زمی برای توسعه منابع انرژی ، تورج ها سرعت جوشکاری و نرخ رسوب انجام گردید. این امر با تحقیقات با ارزشی برای توسعه منابع انرژی ، تورج ها معین جهت نام های تجاری دیگری نظیر قوس سریع (Rapid Ac) ، دوب سریع (Rapid Mal) ، تایم (معین جهت نام های تجاری دیگری نظیر قوس سریع (Rapid Ac) ، دوب سریع (Rapid Mal) ، تایم (TIME

جوشکاری قوسی با "کترود مصرف نشدنی تنگستن (TIG) : فرایند TIG مهمترین روش کیفیتی برای اتصال فولاد ضد زنگ و فلزات غیر آهنی است ، با ایسن وجـود مـوارد

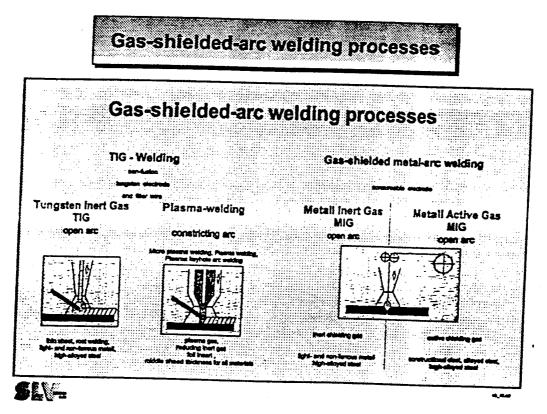
وراید ۱۱۹ مهمترین روس دیمینی برای مسان توت عسارت و عرف یر سیر این می و مراد این مراد می و مراد می و مراد مراد م مصرف این فرایند رو به فزایش است تا آنجا که اکنون افزایش بهره وری و راندمان بوسیله معرفی سیم داغ اضافی (Hot Wire Addition) و یا جوشکاری فضای باریک (Narrow Gap Welding) امکان پذیر شده است. همچنین جوشکری پالس تیگ (Puls TIG) و تکنیک های اوربیتالی برای کاربردهای متغاوت (بعنوان مثال صنایع شیمی که کیفیت بالا در آنها بسیار حیاتی و مورد نیاز است) ، توسعه یافته اند.

کروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

شرکت کاوش همایش

جوشکاری پلاسما :

فرایند جوشکاری پلاسما، شباهتهایی با فرایند جوشکاری TIG دارد تا آنجا که جوشکاری پلاسما را توسعه فرایند TIG و با مزایای بالا می دانند. جوشکاری پلاسما برای فولادهای ضدزنگ با ضخامت ۰/۵ تا ۱۰ میلیمتر ، مناسب می بلشد. این روش برای جوشکاری فولادهای کم کربن مورد استفاده قرار نمی گیرد ، علت آن هم این است که جوشکاری فولادهای کم کربن معمولا توسط دیگر فرایندها امکان پذیر بوده و فرایند پلاسما یک روش نسبتا گران و هزینه بر است.


بعنوان مثال از مزایای این روش می توان به انتقال پایین حرارت به قطعه کار و کیفیت بسیار بـالای جـوش و عدم نیاز به ایجاد بخ سازی ، اشاره کرد. از دیگر مزایای این روش می توان از عدم حساسیت به طـول قـوس ، پایداری قوس خوب و عدم وجود ناخالصی تنگستن می باشد.

گازهای محافظ :

() ,

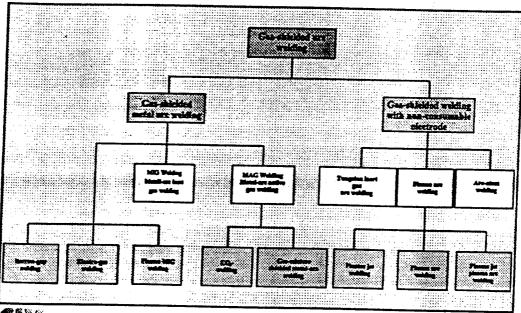
(

نحوه طبق بندی فرایندهای جوشکاری قوسی با گاز محافظ بر اساس اســتاندارد DIN 1910 بخـش چهـرم در شکل ۲ آمده است.

مهتدس سميد محبوبي يور

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

حقَّ چاپ و تکنّیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد


دوره امورشی

کروہ مہندسین ہیں المللی جوش ایران

مورد مصرف ترین فرایندهای جوشکاری با درنظر گرفتن کاربردهای متفاوت ، روش هـای متفـاوت ، گازهـای متفاوت ، گازهای محافظ متفاوت و مواد متفاوت در شکل ۳ آمده است.

> General arrangement to metall welding process DIN 1910 Part 4

SLV-

Figure 3

در جوشکاری قوسی با گاز محافظ ، گاز یک نقش اصلی و اساسی را بازی می کند. ایسن وظیف ، محافظت از حوضچه مذاب و فلز ذوب شده و الکترود تنگستن از اثرات تخریب کننده هوا و ایجاد وضعیت مناسب باری قوس است. در صورتیکه هوا با حوضچه مذاب یا فلز گرم شده (مذاب) تماس گیرد ، اکسیژن موجود در هوا باعث اکسید شدن فلز و یا الکترود تنگستن می شود. نیتروژن و رطوبت موجود در هوا نیز موجب ایجاد تخلخل (POROSITY) و همچنین نیتروژن موجب ایجاد تردی در فلز جوش می شود.

ترکیب شیمیایی گاز محافظ بر روی انتقال مواد از الکترود ذوب شونده به حوضچه مذاب تاثیر می گذارد که در نتیجه بر روی اندازه قطرات ایجاد شده نیز اثر می گذارد. همچنین ترکیب گاز محافظ بر روی نوع پروفیال جوش ، هندسه جوش و سرعت جوشکاری تاثیر می گذارد.

گازهای محافظ برای جوشکاری به دو دسته خنئی (INERT) و فعال (ACTIVE) تقسیم می شوند. گازهای خنثی در واکنش های شیمیایی رخ دهنده در قوس و حوضچه مذاب شرکت نمی کنند ، در صورتیک گازهای فعال در این واکنش ها شرکت می کنند.

استاندارد جدید اروپا برای گازهای محافظ برای جوشکاری قوسی و برشکاری (EN 439) راهی مناسب بـرای طبقه بندی گازهای محافظ بر اساس ترکیب شیمیایی آنها در پیش رو شما می گذارد.

کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

استاندارد EN 439 در برگیرنده خواص گاز ، طبقه بندی ، خلوص ، میزان رطوبت و نحوه تهیه آنها نیز می باشد. در این استاندارد ، گازهای محافظ در ۷ گروه طبقه بندی می شوند : C ، M3 ، M2 ، M1 ، I ، R و F و بر اساس خاصیت خنثی بودن ، اکسیدکنندگی و احیاءکنندگی . جدول ۱ خلاصه ای از گروه های مختلف و دیگر ترکیبات موجود در این گرو ها را بـر اساس شـش ترکیب گازی ویژه نشان می دهد.

Symbol ¹	1			Compo	nents, % (V	M)		Typical	1
Group	identi-	Ox	dizing		neri	Reducing	Unreactive	applications	Remarks
	fication	CO2	, O2	Ar	Hø	H <u>5</u>	N ₂		
R	1			Balance ²⁰		> 0 to 15		TIG,	
								plasma arc welding,	Reducing
	2			Balance ²⁾		> 15 to 35		plasma arc cutting,	
								back shielding	
_	1			100				MIG, TIG,	
ł	. 2				100			Plasma arc welding,	Inert
	3			Balance	> 0 to 95			back shielding	
	1	> 0 to 5		Balance ²⁾		> 0 to 5			Slightily
M 1	2	> 0 to 5		Balance ²					oxidizing
	3		> 0 to 3	Balance ²					
	4	> 0 to 5	> 0 to 3	Balance ²⁾					
	1	> 5 to 25		Balance ²⁰					
M 2	2		> 3 to 10	Balance ²				MAG	
	3	> 0 to 5	> 3 to 10	Balance 2					
	4	> 5 to 25	> 0 to 8	Balance 2					
	1	> 25 to 50		Balance ²					
М 3	2		> 10 to 15	Balance ²⁾					Ŵ
	3	> 5 to 50	> 8 to 15	Balance ²⁾					More
С	1	100							prenounced
	2	Balance	> 0 to 30						oxidierend
F	1						100	Plasma arc cutling	Unreactive
-	2				1	> 0 to 50	Balance	back shielding	Reducing

 Where components not listed are added to one of the groups in this table, the gas mixture is designated as a special gas mixture and carries the perfix S.

مهندس سعيد محبوبي يور

 Argon may be replaced by up to 95% helium The helium content is designated by an additio al identification number;

mappe1.xls

دوره اموزشي

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

شرکت کاوش همایش

خلوص این گازها در گروه های گوناگون بوسیله استاندارد EN 439 کنترل و نشان داده شده است ، جدول ۲ . . Table 2

Purity of gases and gas mixtures according to EN 439

Group		Min. Pu	ırity % t	oy Volume)
P			99 95		
N					
			99.99		
•					
BM 1			99.70		
M2			99.70		
					
M S			99.70		
			99.70		
•			00 50		· · · · · · · · · · · · · · · · · · ·
			888		
	Group R I M1 M2 M3 C F	R I M1 M2 M3 C	R I M1 M2 M3 C	R 99.95 I 99.99 M1 99.70 M2 99.70 M3 99.70 C 99.70	R 99.95 I99.99 M199.70 M299.70 M399.70 C99.70

فرایند جوشکاری MIG غالبا" برای جوشکاری آلومینیوم و آلیاژهای آن ، مس و آلیاژهای آن و بعضی مواد دیگر استفاده می گردد.

فرایند جوشکاری MAG عموما^{*} برای اتصال دهی فولادهای نرم ، کم آلیاژ و ضد زنگ به کار می رود. در ایــن موارد باید از مخلوط گازهای فعال (ترکیب یک یا چند گاز فعال) که به گاز آرگون برای بهینه کردن فرایند از لحاظ کیفیت و بهره وری اضافه شده است ، استفاده نمود.

آرگون خالص برای جوشکاری MIG فولادها قابل استفاده نیست ، زیرا قوس در این حالت بسیار ناپایدار بوده و به همین منظور باید یک ترکیب اکسید کننده برای پایدار نمودن قوس و برای اطمینان از انتقال روان فلز در حین جوشکاری به آرگون اضافه گردد. این ترکیب اکسید کننده می تواند اکسیژن ، دی اکسید کربن و یا ترکیبی از آنها باشد. مقدار افزودن این گازها و درصد ترکیب آنها بستگی به نوع فولاد و کاربرد آن دارد. بعنوان مثال برای جوشکاری فولادهای ضدزنگ می توان از ترکیب گاز با یک تا چند درصد دی اکسید کربن و اکسیژن استفاده نمود. فولادهای نرم و کم آلیاژی را می توان با ترکیب گاز آرگون و دی اکسید کربن (در 20 ۲۵ ۲۰ – ۵ ٪) و یا (۲۵ ۲۱ ٪ – ۴ ٪) جوشکاری کرد.

جوشکاری MAG برای فولادهای نرم و کم آلیاژی با گاز CO2 نیز امکان پذیـر اسـت. CO2 یـک گـاز نسـبتاً ا ارزان است و در گذشته بصورت گسترده مورد استفاده قرار می گرفته است.

CONTRACTOR OF A DESCRIPTION OF A		
	A THE PROPERTY AND A	

رلوژی جوشکا <i>ر</i> ی قوسی	نكنو
-----------------------------	------

P

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

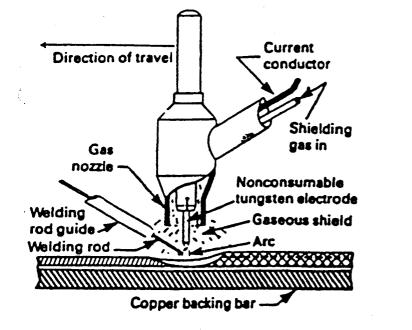
C

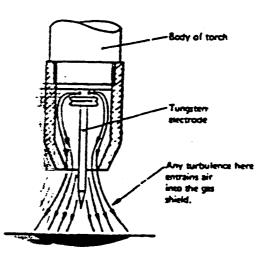
0

دوره اموزشي

امروزه ما می دانیم که قبمت گاز یک بخش غیر قابل گذشت از قیمت کل تمام شده بـرای فراینـد جوشـکاری است و خواصی نظیر کیفیت جوش ، سرعت جوش ، میزان ترشحات و قدرت تمیزکنندگی کسه همگی بسر اثبر نوع گاز تغییر می کنند ، بخش مهمی از اقتصاد در مهندسی جوش را تشکیل می دهد. در استفاده از فرایند TIG و جوشکاری پلاسما ، متداولترین گاز محافظ ، آرگون است .علت استفاده از ایسن گاز نیز تنها در خواص خنثی این گاز برای تمامی مواد می باشد. برای افزایش بهره وری و بالا بردن کیفیت جوش ، غالبا گاز هلیم و هیـدروژن بـه آرگـون اضافـه مـی شـود. آرگون و بویژه هیدروژن ، قدرت هدایت بسیار بالاتی برای انتقال حرارت ورودی (HEAT INPUT) بـه قطعـه کار را دارند. برای افزایش سرعت جوشکاری و یا افزایش قدرت نفوذ برای فولادهای ضد زنگ ، گاز هیـدروژن با درصد یک تا هغت درصد (۲ ٪ – ۱ ٪) و برای آلومینیوم از ۳۰ الی ۷۰ درصد به آرگون اضافه می شوند. ميزان و حجم تركيبات اضافه شونده به ضخامت فلز پايه مرتبط است.

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

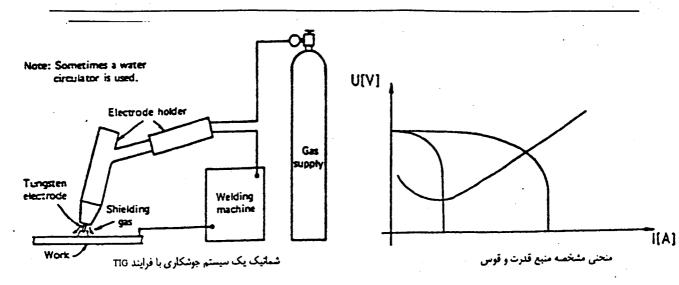


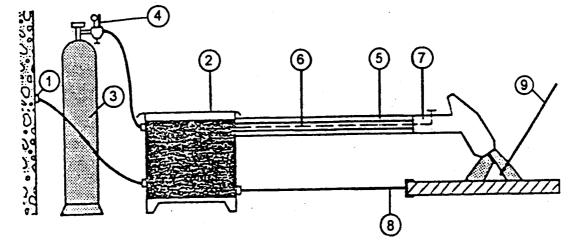


شرکت کاوش همایش

نام های این فرایند : در اروپا ، فرآیند جوشکاری قیسی . گتر محفظ و الکترود تنگستن ، TIG در ایالات متحده امریکا به نام ، WIG (Gas Tungsten Arc Welding (GTAW) ، در استاندارد بین المللی ISO با شماره ۱۴۳ ، در آلمان با نام و در ایران با نام جوشکاری آرگون هم شهرت دارد. نحوه عملکرد : بصورت دستی (Mechanised) و مکانیزه (Mechanised) منبع تامین حرارت : قوس (Arr نوع محافظت : گاز خنثی محدوده جریان : ۱۰ تا ۵۰۰ آمپر

نحوه کار : قوس الکتریکی بین انتهای الکترود تنگستن و فلز پایه و در روی خط اتصال (Joint Line) برقرار می گردد. در این فرایند ، الکترود مصرف نمی گردد و قوس بر روی محل اتصال بصورت ثابت نگاه داشته می شود. جریان بوسیله واحد تلمین قدرت ز اترژی) تلمین می گردد. در صورت نیاز یک فلز پرکننده (معمولا بصورت سیم و با طول یک متر) به تنهای درز اتصال و بر روی حوضچه مداب اضافه می گردد. حوضچه مذاب توسط گاز محافظ خنثی که جیگزین هوا می گردد ، محافظت می شود. مورد کاربردترین گازهای محافظ مورد استفاده در این فرایند ، گتر آرگون (Ar) و گاز هلیم (HE) می باشند. کاربرد : این فرایند برای ایجلا اتصال های با کیقیت بسیار بالا بر روی آلومینیوم ، فولادهای ضد زنگ ، آلیاژهای نیکل – مولیدن (Simonic) و مس (برای محفظه های شیمیایی) ، ساخت قطعات خاص در موتور و ساختمان هواپیماها و عموماً برقی جوشکاری قطعات نازک مورد استفاده واقع می شود.




شرکت کاوش همایش

نمای شماتیک یا ماشین جوشکاری با فرایند TIG :

C

C

منبع قدرت و دیگر کنترل های جوشکاری : ۱. منبع تامین نیروی اصلی ۲. منبع تامین انرژی و کلیدهای کنترل کننده دستگاه (بمب ها ، رادياتور ، تانک سرد کننده و منبع سردکننده با آب)

> کاز محافظ : ۳. کیسول گاز ۴. رگولاتور (تنظیم کننده) فشار و میزان خروج گاز

> > اتصالات لوله اي: ۵. تامین کننده گاز محافظ ح کابل انتقال جریان جوشکاری

... كروه مهندسين بين المللي جوش ايران/ ١٣٧٩ دوره اموزشی 🔅 مهتلس سمید محبوبی بور حق چاپ و،تکثیر، محفوظ و متعلق به شرکت کاوش همایش می باشد

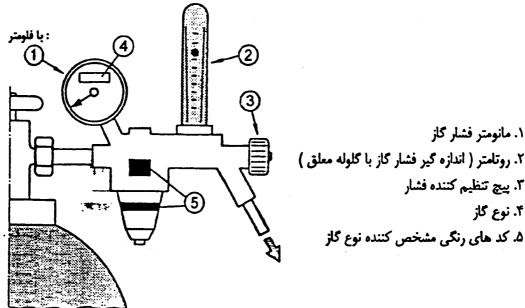
atoria).

کروہ مہندسین بین العللی جوش ایران

: یا ماتومتر

مهندس سعيد محبوبى يور

شرکت کاوش همایش


ائبر (تورج) : ۲. تورج با سوئيچ مخصوص

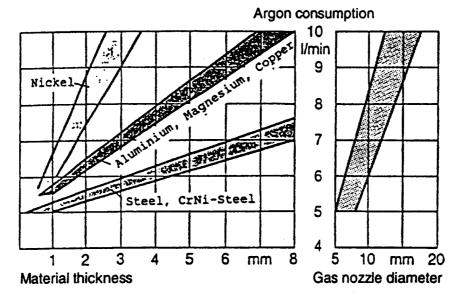
> اتصالات قطعه کار : ۸ کابل برگشتی با گیره

فلز پرکندد : سیم جوشکاری تنظیم کننده (گیچ) فشار خروج گاز و کنترل های مربوط به آن :

> ۱. مانومتر فشار گاز ۲. نمایش دهنده میزان (LEVEL) گاز ۳. پیچ تنظیم کننده فشار ۴. دریچه (VALVE) ایمنی ۵. نازل کاهش دهنده ۶. نوع گاز ۷. کد های رنگی مشخص کننده نوع گاز

وجود یک نازل کاهش دهنده گاز (۵) میزان خروج گاز از سطح مقطع کایل گاز را محدود می کند. مُسْخَصُ نمودن میزان خروج گاز بستگی به میزان فشار دارد. این نازل هم در در بخش کاهش فشار (مـانومتر) و هـم بر روی کابل منتهی به تورج جوشکاری تعبیه شده است. این پیچ تنظیم کننده فشـار همچنیـن وظیف کنـترل نرخ گاز را بر عهده دارد ، عدد نشان دهنده فشار گاز بر روی مانومتر بر حسب لیتر بر دقیقه می باشد.

حق جاب و تكتبر ، محفوظ و منعبة اله شاكت كاهش اهمانسا ام السر



شرکت کاوش همایش

()

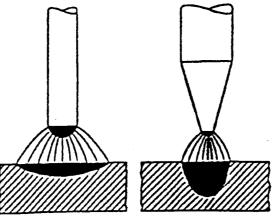
کاهش فشار گاز بصورت ثابت انجام می گیرد. عددی که را جسم شناور درون روتامتر نشان می دهد ، میزان فشار گاز خروجی بر حسب لیتر بر دقیقه می باشد. مصرف گاز محافظ - نوخ جریان گاز (FLOW RATE) - انتخاب نازل : میزان مصرف گاز و مقدار نشان دهنده فشار گاز بستگی بسیار زیادی به دو عامل دارد : الف) ضخامت فلز (ماده) پایه ب) نوع جنس فلز (ماده) پایه

اشتباه در محاسبه و استفاده از شکل بالا می تواند منجر به بروز عیب و خطا در : اندازه حوضچه مذاب اندازه منطقه متاثر از حرارت (HAZ) سرعت جوشکاری معلکرد صحیح انبر (تورچ) جوشکاری معلکرد صحیح انبر (تورچ) جوشکاری مقدار مصرف گاز آرگون بستگی به قطر نازل مورد استفاده دارد و این از طرف دیگر یعنی قطر نازل جوشکاری بر روی دبی گاز خروج تاثیر می گذارد.

. دوره اموزشی --

روش های شروع قوس : در اینجا می توان گفت که برای شروع قوس در فرایند جوشکاری قوسی با الکترود تنگستن و با گاز محافظ (TIG) ، سه روش وجود دارد : روش خراشی (Scratch Statr) ، روش جمع کردن (Retract Start) و روش استفاده از فرکانس بالا (High - Frequency Start). روش خراشی : عموما برای جوشکاری دستی مورد استفاده قرار می گیرد. در این روش قطعه کار توسط الکترود

خراشیده می شود. به محض برقراری قوس ، الکترود تقریبا به اندازه یک هشتم اینچ به عقب کشیده می شود.


کروہ مہندسین بین العللی جوش ایران

شرکت کاوش همایش

این عمل به منظور اجتناب از دخول الکترود در حوضچه مذاب صورت می گیرد. در ابتدا می توان برای روشین کردن قوس از از قطعات بزرگ مس یا قراضه های فولادی استفاده نمود و به محض داغ شدن نوک الکترود ، قوس را بر روی قطعه کار اصلی برقرار کرد.

شروع قوس به روش جمع کردن : ایـن روش بیشـتر در مـورد فرایندهـای مکـانیزه و در صـورت اسـتفاده از بـرق مستقیم (DC) قابل استفاده است. در این روش ، در ابتدا الکترود به طور کامل و در یک لحظه به سطح قطعه کار چسبیده و به محض شروع قوس به عقب کشیده می شود تا قوس به حالت پایدار برسد.

روش شروع قوس با فركاتس بالا (HF) : اين روش هم براى برق متناوب و هم براى برق مستقيم ، هم در روشهاى دستى و هم در روشهاى مكانيزه ، قابل كاربرد است. وقتى از منبع برق متناوب استفاده مى شود ، مدار با فركانس بالا بصورت طبيعى و خود بخود برقرار مى شود. يكى ار مزاياى اين روش آن است كه نيازى به تماس الكترود با قطعه كار وجود ندارد و در نتيجه خطر صدمه ديدن الكترود وجود ندارد. در صورت استفاده از منبع برق متناوب ، در تمام لحظها مدار با فركاتس بالا برقرار است ، اما در صورت استفاده از برق مستقيم (DC) ، فقط تا زمانى كه قوس برقرار مى شود ، فركانس بالا وجود دارد و پس از آن مدار با فركانس بالا ،

Broad and flat penetration

Narrow and deep penetration

kind of	in	tensity of cu	rrent
current	too low	too high	right
= (-)	A	∇	Bood for welding with high intensity of current, cladding and TIG - spot welding
~		Q	good for root passes and thin workpieces

میزان نفوذ در صورت استفاده از الکترودهای گوناگون و با مقدار جریان ثابت

شرکت کاوش همایش

Selection guidelines for welding current

CMn and alloyed steels

Plate thickness	••••••••••••••••••••••••••••••••••••••	layers	electrode	filler rod	Current
1,0	11	1	1 or 1,6	1,6 or 2,0	3040
2,0	11	1	1,6 or 2,4	1,6 or 2,0	7080
3,0	II.	1 or 2	2,4	2,4	7090
4,0	ll or V	2	2,4	2,4	70130
5,0	V	3	2,4 or 3,2	2,4	75130
6,0	V	3	2,4 or 3,2	2,4 or 3,0	75130

Aluminium

AC, welding, position flat, butt weld

Plate thickness	Joint type	No. of layers	Dlameter of: electrode	filler rod	
1,0	11	1	1,6 or 2,4	2,0	4050
2,0	11	1	1,6 or 2.4	3.0	6080
3,0	11	1	2,4	3,0	110-130
4,0	11	1 or 2	2,4 or 3,2	3,0	120-150
5,0	li or V	1 or 2	3,2	3,0	150-200

<u>Copper</u>

DC, electrode negative, welding position flat, butt weld.

Plate	i notare JOINE here in	No. of layers	oloetrodo)f filler rod	Current
1,5	11	1	1,6	2,0	90100
3,0*)	li	1	3,2	3,0	150-200
5.0*)	V	2	4,0	4,0	180-300

*) Pre heat

Note

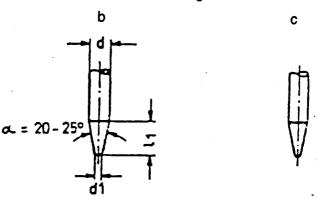
For welding in horizontal and vertical positions, the current is approximately 10 to 20 % lower.

مهندس سميد محبوبي يور 🕫

کروه مهندسین بین المللی هوش ایران/ ۱۳۷۹ مو دار و کند ، محفوظ و منطق به شرکت کاهش همان مرازم دوره اموزشی ---- -----

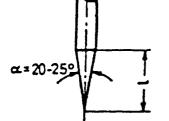
€.

لولوژی جوشکا <i>ر</i> ی قوسی	نک
------------------------------	----



شرکت کاوش همایش

تکنیک کار : تنظیم مقدارجریان صحیح در انجام جوشکاری موفق ، بسیار تعیین کننده است. در این میان شکل هندسی نوک الکترود برای ایجاد دانسیته جریان یکنواخت ، بسیار مهم می باشد. در هر لحظه که مقدار جریان از حد معین آن فراتر رود (Over Loading) ، الکترود شروع به ذوب شدن می کند و قطرات لرزان تنگستن در نوک الکترود شکل می گیرد. در نتیجه قوسی بسیار قوی شکل می گیرد. در اینجا این خطر وجود دارد که این قطرات تشکیل شده به حوضچه مذاب منتقل گردند. الکترودی که تحت بارهای بسیار کم قرار می گیرد ، قوس را در تمام سطح انتهایی خود ، نخواهد داشت و قوس ناقص خواهد شد. در اینصورت پایداری قوس کاهش یافته و جوشکاری مشکل خواهد شد. اگر جوشکاری با جریان مستقیم انجام شود ، نوک الکترود مطابق شکل a ، گرد خواهد شد. در صورت استفاده از جریان منتقیم انجام شود ، نوک الکترود مطابق شکل b ، گرد خواهد شد. این میزان پخ به شکلی صاف تر و روان تر تبدیل خواهد شد (شکل c) . بعد از پایان جوشکاری و خاموش شدن قوس ، الکترود باید در گاز محافظ خنثی ، خنک گردد. در صورتی که این عمل انجام نشود ، الکترود اکسید شده و به رنگ قهوه ای متمایل به آبی در می آید. الکترود اکسید شده این عمل انجام نشود ، الکترود اکسید شده و به رنگ قهوه ای متمایل به آبی در می آید. الکترود اکسید شده


در هنگام جوشکاری موجب ایجاد یک قوس بنفش رنگ می شود.

alternating current

direct current a

(-

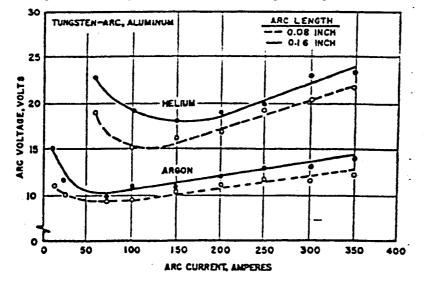
d	ł
1.0	2.5
1.6	4.0
2.4	6.0
3.2	8.0
4.0	10.0

بد محبوبی یور

d	d1	l1
1.0	0.5	1.2
1.6	0.8	2.0
2.4	1.2	3.0
3.2	1.6	4.0
4.0	2.0	5.0

وره اموزشی

Q:	•	-	-	- 14		-	-				v	•	90	r	21	2	•	12	Ł	х.	20	ε.	١.	Ξ.	۰.	2	64	24	44	1					۰.	5	12	1	Ú.		м		2		14	۰.	- 6	2	14	\$	
5	÷	۰.	c		÷.	Ì	æ	4	٠.				4	۰.	ċ	э.	2	z	,	4	0	۲	0	9	r	8	Ł	1				1	1		F.		1	Ŀ,	F.	v		2	3		Γ.	5		2	2	ς,	,
٠,	۰.	12		- 0	17	۰.	٠	1	-	×	٠.	29		.,						22	÷		0	-	2			×.		10	۰.			_		λ.	٠,		11		÷	ю	×.	۰.	2	22	92	8	÷.		
	с.									۰.			•	- 2	۰.	×	4			24	1	۰.	11			z	۰,۰	1										э.	11	Ŀ	1	4	22				2.2	22		1	


R

شرکت کاوش همایش

Type of current	Tungsten electrode	Current intensity		
		too low		too high
	thoristed			
~	pure			
	thonisted			

Current carrying capacity of pure thoriated tungsten electrode as a function of diameter

Configuration of tungsten electrode end during welding with too low correct and too high current intensity

مهندس سید محبوبی یوز 🕫

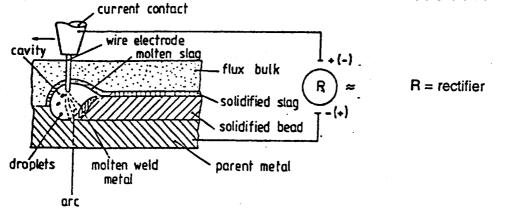
Arc voltage characteristics of argon and helium

🛫 🐖 🐼 🗹 دوره اموزشی 🖏 👷

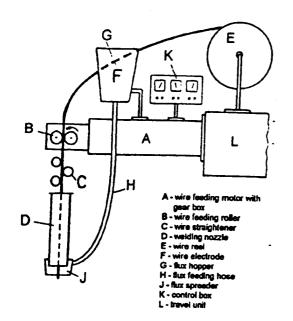
(

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

گروه مهندسین بین المللی جوش ایران


 $\langle \cdot \rangle_{i}$

شرکت کاوش همایش


تعريف: 🗇

در این فرایند ، قوس بصورت غیر قابل رویت بین الکترود ذوب شونده (سیم جوش) و قطعه کار و یـا بیـن دو الکترود ذوب شونده برقرار می گردد. قوس و منطقه جوشـکاری (حوضچـه مـذاب) بوسـیله لایـه ای از پـودر مخصوص (FLUX) محافظت می گردد. حوضچه جوش توسط سرباره بوجود آمده از پودر ، از مضرات تمـاس یافتن با اتمسفر محافظت می گردد. (استاندارد 1919 NID بخش دوم)

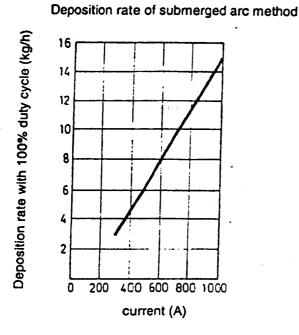
اصول فرایند جوشکاری زیر پودری (SAW) :

تجهیزات مورد استفاده در فرایند جوشکاری زیرپودری :

A : موتور تعدیه کننده سیم با گیربکس B : غلطک تعذیه کننده سیم C : صاف کننده سیم D : نازل جوشکاری F : کویل سیم F : سیم جوش H : ٹوله حمل کننده پودر J : جبه فرمان L : واحد حمل کننده سیستم

دوره آموزشی گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹ مهندس سید محبوبی بور

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد . در معاد اینام عمد با افغانی



2

تکنولوژی جوشکا*ر*ی قوسی

کروہ مہندسین ہیں العللی جوش ایران

شرکت کاوش همایش

قطر استاندارد سیم جوش بر اساس استاندارد DIN EN 756 : 8.0 - 6.3 - 6.0 - 5.0 - 4.0 - 2.2 - 3.0 - 2.5 - 2.0 - 1.6 (اندازه ها به میلیمتر می باشد) توجه : برای آشنایی با نحوه آماده سازی قطعه کار و طراحی پخ برای اتصالات مورد استفاده در این فرایند به استاندارد DIN 8551 ، بخش چهارم ، مراجعه فرمایید.

> مثال : متغییرهای جوشکاری بسیار متداول در این فرایند به شرح ذیل می باشد : قطر سیم جوش : ۴ میلیمتر میزان جریان : ۲۰ آمپر میزان ولتاژ : ۳۰ ولت سرعت جوشکاری : ۵۰ سانتی متر بر دقیقه

> > وظايف پودر جوشكاري :

େ

0

اصلاح و کمک به هدایت الکتریکی در منطقه قوس :

و بنابراین : الف) کمک به شروع قوس محافظ ب) پایدارسازی قوس

۲. تشکیل سربارد (گل جوش) :

که در نتیجه : الف) کمک به خروج حبابها و گازها از منطقه حوضچه مذاب

÷.

(

Ì

شرکت کاوش همایش

ب) محافظت از قطره های انتقال یابنده ج) محافظت از حوضچه مذاب د) کمک به ایجاد شکل مناسب پروفیل جوش •) محافظت از سیم جوش در برابر نرخ سرد شدن بالا (در برابر سریع سرد شدن)

۳. تاثیرات متالورژیکی بر فلز جوش :

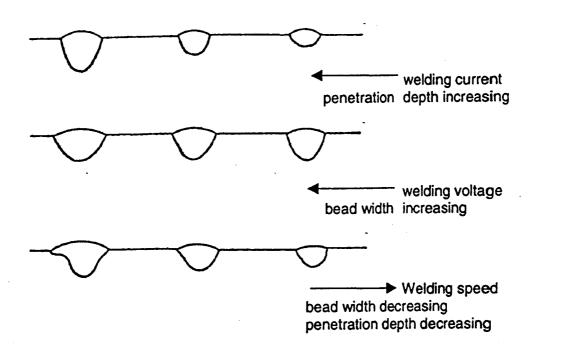
بوسیله : الف) واکنش های بین سرباره و فلز پایه ب) اکسید زدایی بوسیله ترکیبات فروسیلیکون و فرو منگنز

۴. ألياژسازى:

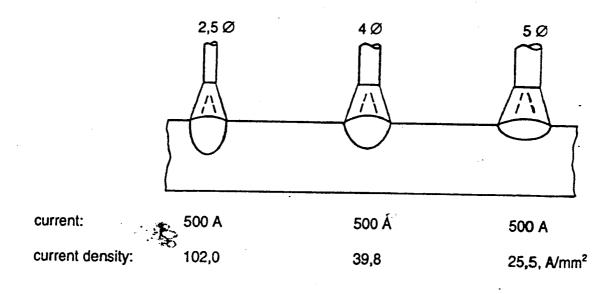
ز دوره اموزنین 👏

بوسيله : اضافه كردن عناصر ألياژي توسط پور جوش (مانند كروم ، كربن و ...)

کروہ مہندسین بین المللی جوش ایران


شرکت کاوش همایش

C


C

دوره اموزشی 🚜

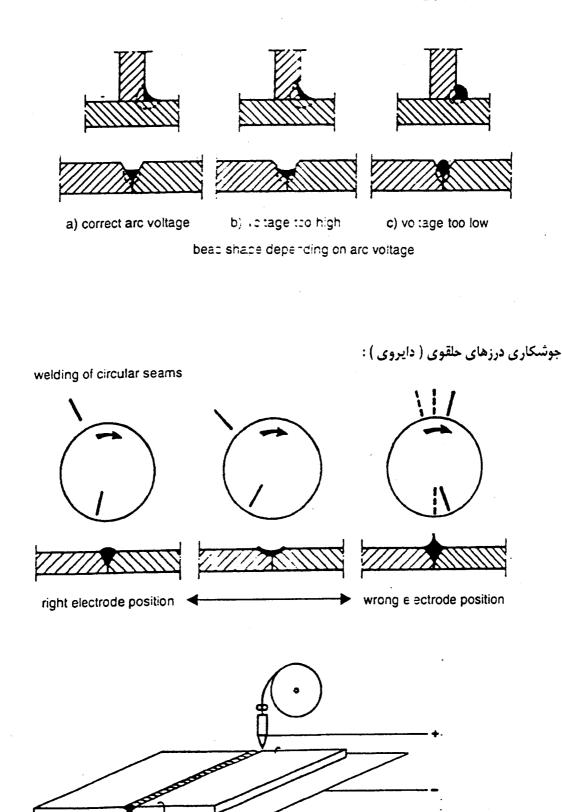
تاثیر پارامتر های جوشکاری بر شکل ظاهر جوش :

تاثیر دانسیته جریان بر روی بستر و شکل جوش :

گروه مهندسین بین المانی جوش ایران / ۱۳۲۹ 🖉 👘

حَقَّ جَابٍ و تَكثير ۖ مُحفوظ و مُتَعلَقَ بَه شَرَكت كاوش همايش مَي باشد

محبوبی یور


شرکت کاوش همایش

کروہ مہندسین ہین العللی جوش ایران

(.

0.

تاتیر پارامتر های جوشکاری (ادامه) :

favourable work piece connection

, w.

دوره لموزشی 🖉 🔬 👘 🕹 دوه مهندسین بین المللی خوش ایران/ ۱۳۷۹

ا شنایی با تست و

کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

كروه مهندسين بين المللي خوش ايران/ ١٣٧٩ =..

ا شنایی با تست و دستو *ر*العمل جو شکا*ر*ی

شرکت کاوش همایش

مقدمه

بوره اموزنين

هدف از تنظیم یک WPS مشخص و تعیین کردن جزئیات فرایند جوشکاری یک قطعـه اسـت. برخـی از کارخانه ها برای تولیدات خود گواهی کیفیت نیز تنظیم می کنند تـا بوسـیله آن شـرایط آمـاده سـازی، بررسی و تائید مشخصات بیان شده در روش جوشکاری ، کنترل شود.

براساس نوع سازه ، استانداردهای مختلفی برای طراحی و ساخت سازه در کشورهای مختلف موجود است و تقریباً در تمامی این استانداردها بخشی به جوشکاری و کنترل کیفی اختصاص داده شده است. به عنوان مثال در آمریکا ، طراحی و ساخت بویلرها، مخازن تحت فشار و نیروگاههای اتمی براساس استانداردهای منتشره از سوی انجمن ASME صورت می گیرد. همچنین برای سازه های فلزی انجمن AWS استانداردهایی را منتشر ساخته است. انجمن API نیز برای مخازن ذخیره فولادی و لوله های انتقال گاز ،کدهایی را معرفی کرده است.

امروزه خواسته های کییفیتی جوش جهت کسب استانداردهای ISO 9001 ، باید براسس کد EN-729 تنظیم گردد. این استاندارد در چهار بخش به ترتیب راهنمای انتخاب واستفاده ، خواسته های کیفیت کامل ، خواسته های کیفیتی استاندارد و خواسته های کیفیتی ابتدایی جوشکاری را مطرح می سازد. معیارهای تعیین کیفیت و کنترل کیفیت جوشکاری برای سازه ها و تجهیزات مختلف متفاوت است. معیارهای تعیین کیفیت و کنترل کیفیت جوشکاری بوای سازه ها و تجهیزات مختلف متفاوت است. کنترل کیفیت جوشکاری سازه های فلری و مخازن تحت فشار، استاندارد AWS. D1.1 ، برای کنترل کیفیت جوشکاری سازه های فلری و 500 API ، 1011 API به ترتیب برای تعیین کیفیت جوشکاری مخازن ذخیره فولادی و خطوط لوله گاز می باشد . در کشورهای اروپایی نیز استاندارد EN-288 به تنظیم روش جوشکاری اختصاص داده شده است.

نکته حائز اهمیت آن است که هدف تمامی استانداردهای مذکور تعیین کیفیت مطلوب جوش است و تنها بسته به مسائل طراحی مورد نظر ، متغیرهای اساسی مورد توجه جهت ارائه روش جوشکاری ، تغییر می کند.

مشخصات روش جوشکاری براساس نیازهای سازنده و بنا به تائید مشاور طرح ، تنظیم می گردد. مأخذ مورد استفاده در این دوره استاندارد ASME ، Sec IX بوده و به استانداردهای مشابه مانند AWS، D1.1 نیز اشاره شده است .

مهتلين ليبا هترمنديان

دستورالعمل جوشكارى

شرکت کاوش همایش

۲-۱) مشخصات سربرگ فرم WPS :

()

(

نحوه تنظیم فرم مشخصات روش جوشکاری (WPS)

در ضمیمه شماره <u>(</u> نمونه آخرین فرم WPS پیشنهادی در استاندارد (ASME, Sec IX. (QW-482 نشان داده شده است. همانطور که مشاهده می شود در سربرگ فرم ، مشخصات اولیه یک WPS ذکر می گردد. بسته به شرایط کاری هر شرکت ، این قسمت قابل تغییر است.

موارد توصیه شده در استاندارد ASME عبارتند از : ۱) نام شرکت ۲) شماره WPS : این شماره استاندارد خاصی نداشته و بنا به قراردادها و بخشنامه های داخلی هر شرکت تعیین می شود. ۳) تاریخ تنظیم WPS ۴) شماره گزارش کیفیت جوشکاری تائید کننده (PQR No.) ۵) شماره تجدیدنظر ۶) تاریخ تجدیدنظر ۲) فرآیند یا فرایندهای جوشکاری مورد استفاده ٨) نحوه انجام فرایند جوشکاری

مطابق با آنچه در سـربرگ فـرم WPS دیـده میشـود ، اولیـن قـدم در نوشـتن WPS تعییـن فراینـد یـا فرایندهای جوشکاری است. برای این منظور با در نظر گرفتـن پارامترهـای مختلـف مؤثـر و نـیز مزایـا و محدودیت های هر روش جوشکاری بهترین و صحیح ترین فرایند را انتخاب می کنیم.

گرود مهندسین بین البللی جوش ایران/ ۱۳۷۹

مهندس تيما هتروشايان

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره اموز شی. در در د

(

ا شنایی با تست و دستورالعمل جو شکاری

کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

پارامترهای انتخاب صحیح روش جوشکاری : ۱-اندازه ، ابعاد و طرح اتصال قطعات ۲- جنس مواد پایه ۳- قابلیت دسترسی (فرایند و قطعه کار) ۴- تعداد قطعات ۵- تجهیزات در دسترس ۶- موقعیت جوشکاری ۷- اقتصاد جوش

برای سهولت فرایندهای جوشکاری را با نام اختصاری در سربرگ فـرم مـی نویسـیم . اسـامی اختصـاری برخی فرایندهای جوشکاری در جدول <u>۱</u> آمده است.

Symbol	Welding Process	فرايند جوشكاري
SMAW	Shielded Metal Arc Welding	جوشکاری قوس الکترود روپوش دار
GMAW	Gas Metal Arc Welding	جوشکاری قوس فلزی با گاز
GTAW	Gas Tungsten Arc Welding	جوشکاری قوس تنگستنی
FCAW	Flux Cored Arc Welding	جوشکاری قوس با الکترود توپودری
MIG	Metal Inert Gas Welding	جوشکاری قوس- فلز با گاز محافظ خنئی
MAG	Metal Active Gas Welding	جوشکاری قوس- فلز با گاز محافظ فعال
TIG	Tungsten Inert Gas Welding	جوشکاری تنگستنی با گاز محافظ خنثی
PAW	Plasma Arc Welding	جوشكارى قوس پلاسما
OFW	Oxy-Fuel Gas Welding	جوشکاری با سوخت گازی
ESW	Electroslag Welding	جوشکاری سربارہ الکتریکی
EGW	Electro-Gas Welding	جوشکاری گاز الکتریکی
EBW	Electron Beam Welding	جوشکاری پرتو الکترونی
SAW	Submerged Arc Welding	جوشكارى قوس-زيرپودرى

جدول ۱- اسامی اختصاری فرایند های جوشکاری .

دوره لنوزندی می استان می المالی جوش ایران/ ۱۳۷۹ میندس نیا مترسدیان

شرکت کاوش همایش

پس از تعیین روش جوشکاری ، باید نحوه انجام روش جوشکاری نیز مشخص می شود. روش جوشکاری می تواند بصورت دستی Semi-Automatic ، نیمه اتوماتیک Automatic یا ماشینی Machine باشد. به عنوان مثال جوشکاری قوسی با الکترود روپوش دار به علت استفاده از الکترودهایی با طول محدود و فرایندی دستی تلقی می شود.

: Joints (QW-402) طرح اتصال (T-۲

مشخصات طرح اتصالی که روش جوشکاری برای آن نوشته می شود ، در این قسمت از فرم WPS نشان داده می شود. استاندارد مربوط به طرح اتصال ، QW-402 است. در صورت تمایل و نیاز فرایند ، پخ سازی مورد نظر نیز قابل ذکر است. معمولاً آماده سازی شیار یا پخ جوشکاری با یکی از روشهای:برش اکسیژن ، استفاده از الکترودهای کربنی ، برش قوس پلاسما یا روشهای مختلف ماشینکاری و سنگ زنبی صورت می گیرد. تمیزکاری پخ جوش باعث بهبود جوش می گردد.

> در این قسمت موارد پیشنهادی برای ارائه عبارتند از : ۱) طرح شیار یا پخ جوشکاری ۲) پشت بند ۳) جنس مواد پشت بند

۱-۲-۲) طرح شیار یا پخ (Groove Design)
 در این قسمت با توجه به جدول ۲ ، نام یا نام اختصاری شیار و طرح اتصال را ذکر می کنیم. لازم به ذکر است که عنوان طرح اتصال بصورت کلی (Geove – Fillet – G&F)
 است که عنوان طرح اتصال بصورت کلی (Geove – Fillet – G&F) نیز امکان پذیر است.
 بهتر است شکل طرح اتصال ، علامتهای اختصاری جوشها ، توضیحات نوشتاری که موقعیت قطعات را نشان می دهد و در صورت امکان جزئیات اتصال نیز ارائه شود.
 در ضمیمه ۳ مثالهای گوناگونی از طرحهای اتصال همراه با مشخصاتی از قبیل نام اختصاری طرح جوش ، ضخامت فلزات پایه ، وضعیت جوشکاری مطلوب و ابعاد مـورد نظر با توجه به فرایند جوشکاری و فخامت ، مطابق با استاندارد III میلام.

دورہ اموزشی سائ

the second s

شرکت کاوش همایش

*کروہ مہندسین ہین المللی جوش ایرا*ن

····•

....یې با سامنانه روس بېرسارې و انزرس مېرې ميغې ...

Г	·····	······································	
	Symbol	Joint Type	نوع اتصال
	В	Butt Joint	اتصال سر به سر
ſ	С	Corner Joint	اتصال گوشه ای
	Т	T-Joint	اتصال به شکل T
	BC	Butt or Corner Joint	اتصال سر به سر یا گوشه ای
	TC	T-Joint or Corner Joint	اتصال گوشه ای <u>ب</u> ا اتصال به شکل T
	BTC	Butt, T- or Corner Joint	اتصال سر به سر،گوشه ای یا اتصال به شکل T
Ē	Symbol	Base Metal Thickness & Penetration	ميزان نفوذ جوش وضخامت فلز پايه
	L	Limited Thickness, Compelet Joint Penetration	ضخامت محدود ، نفوذ كامل جوش
	U	Unlimited Thickness . Compelet Joint Penetration	ضخامت نامحدود ، نفوذ كامل جوش
	Р	Partial Joint Penetration	نفوذ ناقص جوش
	Symbol	Weld Type	نوع جوشکاری
	1	Square-Groove	شیار مربعی
	2	Single-V-Groove	۔۔۔۔ شیار -V-یک طرفہ
	3	Double-V-Groove	شيار -V-دو طرفه
	4	Single-Bevel-Groove	شیلر نیم جناغی یک طرفه
	5	Double-Bevel-Groove	شیلر نیم جناغی دو طرفه
	6	Single-U-Groove	شيار -U-يک طرفه
	7	Double-U-Groove	شيار -U-دو طرفه
	8	Single-J-Groove	شيار -J-يک طرفه
	9	Double-J-Groove	شيار -J-دو طرفه
-	10	Flare-Bevel-Groove	یر بر بر شیار نیم جناغی لبه گرد

جدول۲- مشخصات طرح های اتصال .

ى مهندىن ليما هنومنديان-

گروه مهندسین بین البللی جوش ایران/ ۱۳۷۹

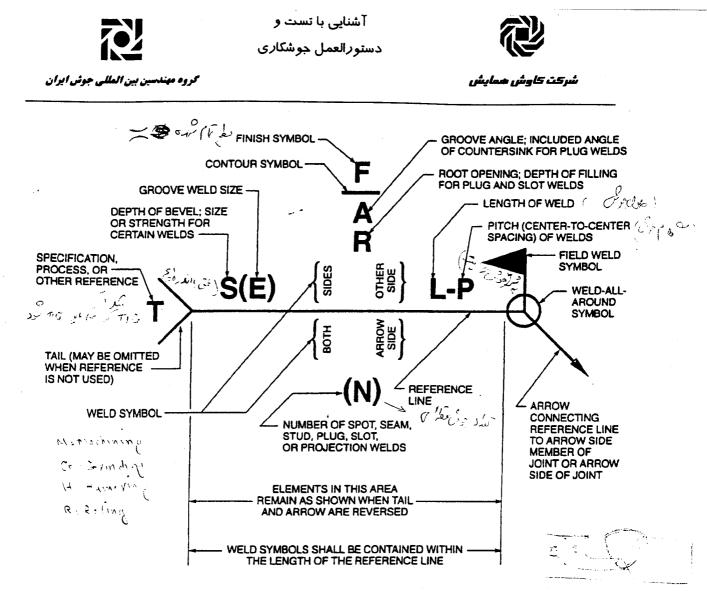
حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

جوره ليوز تي

•

کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش


C

نکته قابل توجه در اشکال و طرحهای ضمیمه <u>۳</u>، علائم اختصاری جوشها است. استفاده از این علائم در نقشه ها متداول است و لذا شناخت و اطلاع از این علائم موجب تسهیل و تسریع کار می گردد. در جدول <u>۳</u> علائم گوناگون مورد استفاده در جوشکاری نشان داده شده است.

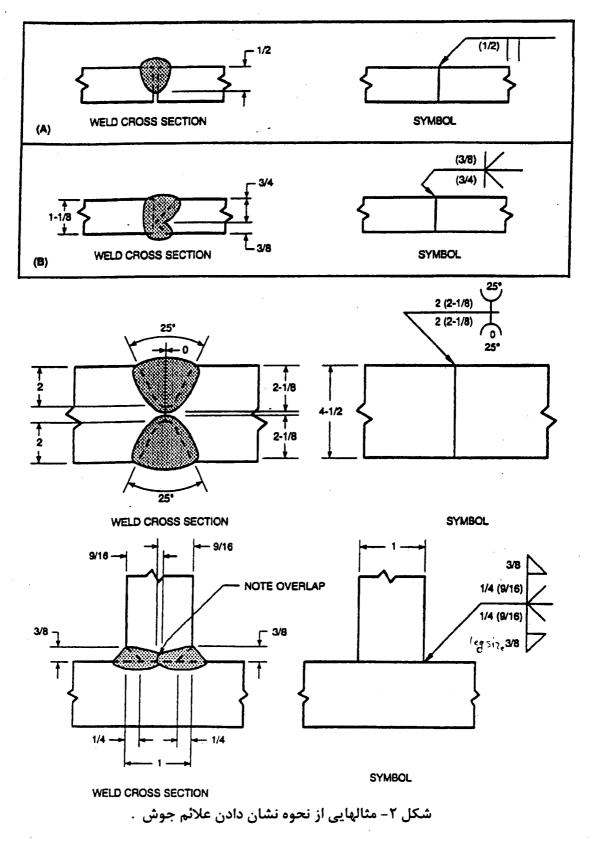
			GF	ROOVE			
SQUARE	SCARF	v	BEVEL	U	L	FLARE-V	FLARE-BEVEL
			K	Y	Ľ		16
 				\frown	Ņ		
FILLET	PLUG OR SLOT	STUD	SPOT OR PROJECTION	SEAM	BACK OR BACKING	SURFACING	EDGE
دی درم ک ک		<u></u> &	О О	ф ф	-O-	-00-	

جدول ٣- علامتهای اختصاری طرح اتصال جوشهای مختلف.

معمولاً برای نشان دادن علائم جوش از یک پیکان استفاده می شود که ابعاد و مشخصات کـامل پـخ بـر روی آن ذکر می گردد. نحوه تنظیم و ترسیم پیکان در شکل ۱ نشان داده شده است. مثالبهایی از نحوه Neb (rostal parking علامت گذاری جوش در شکل ۲ دیده می شود. min-al bead The Seramis backing (Backing) یشت بند (۲-۲-۲ همانطور که در شکل های ضمیمه ۳ دیده می شود. ،بنا به ملاحظات طراحی و به منظـور جلـوگیـری از اکسید شدن مذاب ریشه شیار جوش ، عدم ریزش مذاب از پشت شیار ، افزایش یا کاهش سرعت انجماد فلزی ، غیرفلزی ، جریان گاز یا فلاکس (پودر جوش) به عنوان پشت بند استفاده می شود. در این قسمت استفاده یا عدم استفاده از پشت بند ذکر می گردد.

شکل ۱- موقعیت استاندارد پارامترهای لازم برای نشان دادن علامت جوش

Backing Material < Type>) جنس مواد پشت بند (<Sacking Material > Type) جنس ونوع پشت بند در این قسمت درج در صورت استفاده از پشت بند (بنا به صلاح دید طراح) جنس ونوع پشت بند در این قسمت درج می شود. موادی که عمدتاً به عنوان پشت بند بکار می روند عبارتند از : الف) تسمه های فولاد کربنی ساده ب) ورقهای مسی ج) فلاکس (پودر جوش) ج) فلاکس (پودر جوش) د) جریان گازهای محافظ : ۲۰۰۰ می 20 د) جریان گازهای محافظ : ۲۰۰۰ می کند. د) جریان گازهای محافظ : ۲۰۰۰ می کند. د) جریان گازهای محافظ : ۲۰۰۰ می کند. د) جریان گازهای محافظ : ۲۰۰۰ می کند. کرفته می شوند (Ar - فولاد کراست که در جوشهای گلویی یا سپری (Fillet) فلز پایه خود به عنوان پشت عمل می کند. گرفته می شوند (Ar - فولاد کراست که در جوشهای گلویی یا سپری (Fillet) فلز پایه خود به عنوان پشت عمل می کند.



شرکت کاوش همایش

C...

€.

شیاری یک طرفه ، پاس ریشه سنگ زده شده و برداشته می شود (Back Chipping) و جوشکاری پشت درز اتصال مجدداً انجام می گیرد ، فلز جوش را به عنوان پشت بند در نظر گرفت.

 دستورالعمل جوشكارى

شرکت کاوش همایش

کروہ مہندسین ہیں المللی جوش ایران

۲-۳) فلزات یا به (Base Metal (QW-403)

ذکر نوع و ترکیب شیمیایی فلزات پایه ای که جوشکاری بر روی آنها انجام می شود ، از جمله مسهمترین و الزامی ترین موارد WPS است. نوع فلز پایه (شماره استاندارد) ، ترکیب شیمیایی و عملیات حرارتی انجام شده یا لازمه برروی فلز پایه (قبل از جوشکاری) ، در انتخاب مشخصات فرایند جوشکاری مانند پیشگرم ، عملیات حرارتی پس از جوشکاری ، انتخاب االکترود و تکنیک کار دخیال است. استاندارد مربوط به فلز پایه 403-QW می باشد.

> ۱ - عدد مشخصهٔ P No.) P مم چنین عدد گروه (Group No.) لاسم مُر، بُرًا(کے ۲۰۰۰ مَس ۲- شماره استاندارد یا ترکیب شیمیایی ۳- محدودهٔ ضخامت فلز پایه و محدودهٔ قطر لوله

> > ۴- دیگر موارد.

(PNo.) P عدد مشخصة (۲-۳-۱)

برای کاهش تعداد PQR . WPS های مورد نیاز و استفاده ، فلزات پایه تحت عدد مشخصه P تقسیم بندی شده اند. ترکیب شیمیایی آلیاژ ، جوش پذیری و خواص مکانیکی ، اساس این تقسیم بندی است. البته در صورتی که تست ضربه برای آزمایش کیفیت فولاد ضروری باشد ، در هـر عـدد مشـخصهٔ P تقسیم بندی جزئی تری نیز صورت گرفته و فولادهای تحت هر عدد مشخصهٔ P به گروههای کوچکتری تقسیم می شوند (Group No.). بـا استناد بـه اعـداد مشـخصهٔ P و .on Group مـی تـوان در بـاره قـابلیت جایگزینی دو آلیاژ از نظر خواص متالورژیکی و عملیات حرارتی پس از جوشکاری اظهارنظر کـرد. مسلماً باید مسائل طراحی را نیز در این جایگزینی مدنظر قرار داد.

در جدول <u>۴</u> اعداد مشخصهٔ P برای آلیاژهای مختلف براساس کد مشخص شده است.

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

کروہ مہندسین ہیں المللی جوش ایران

P-No.	کد مربوطه در ASME , Sec. IX کد مربوطه در	نوع آلياژ
1-11	QW/QB-422	فولادها
21-25	QW/QB-422	آلومينيوم وألياژهاي Al
31-35	QW/QB-422	مس وألياژهای Cu
41-47	QW/QB-422	نیکل والیاژهای Ni
51-53	QW/QB-422	تيتانيوم وآلياژهاي Ti
61-62	QW/QB-422	زيركنيوم وآلياژهاي Zr

جدول۴- کد های ASME مربوط به P-No. آلیاژهای مختلف.

در صورتیکه آلیاژی در جداول QW/QB-422 موجود نباشد به جای عـدد مشـخصهٔ P ، نـوع ، ترکیـب شیمیایی و یا خصوصیات مکانیکی آلیاژ مورد نظر باید در WPS ذکر شود. در ضمیمه ۴ بخشی از QW/QB-422 ارائه شده است.

۲-۳-۲) شماره استاندارد یا ترکیب شیمیایی (Specification type & grade / Chem. Analysis) در این بخش ، شماره استاندارد و فلزات پایه براساس استانداردهای مرتبط ذکر می گردد. کلیه آلیاژهای پذیرفته شده توسط انجمن ASME در کد ASME . Sec II . Part A.B ذکر و مشخصات آنها درج گردیده است. در صورتیکه فلزات پایه ، شماره استاندارد مشخصی نداشته باشند، باید ترکیب شیمیایی وخواص مکانیکی فلزات پایه را ذکر کرد.

۳-۳-۲) محدوده ضخامت فلز پایه و محدوده قطر لوله

()

(Thickness Range : Base Metal / Pipe Dia. Range) ضخامت فلزات پایه در مقطع جوشکاری در این قسمت از فرم نوشته می شود. اگر اتصال شیاری (Groove) باشد ، ضخامت ها در قسمت Groove و اگر اتصال گلویی یا سپری (Fillet) باشد، ضخامت ها در قسمت Fillet درج می گردد. در صورتیکه قطعه مورد جوشکاری لوله باشد علاوه بر ذکر ضخامت

دستورالعمل جوشکا*ر*ی

شرکت کاوش همایش

فلزات پایه لازمست تا قطر لوله نیز در WPS نوشته شود. معمولاً قطر خارجی لوله را با O.D. و قطر داخلی لوله را با I.D. و قطر داخلی لوله را با I.D. نشان می دهند.

۴-۳-۴) دیگر موارد (Other)
در این قسمت نکات مهم دیگری که مربوط به فلزات پایه باشد درج می گردد.

Filler Metal (QW-404) فلزات پر کننده (QW-404) Filler Siller Siller بین فلزات پایه ، به یک پل واسط فلزی نیاز داریم. اصولاً در اکثر فرایندهای جوشکاری برای ایجاد اتصال بین فلزات پایه ، به یک پل واسط فلزی نیاز داریم. فلزات مورد استفاده برای این منظور به عنوان فلزات پر کننده شناخته می شوند. با در نظر گرفتن فرایند جوشکاری و پارامترهای مختلف مؤثر ، صحیح ترین فلز پر کننده را انتخاب می کنیم.

یارامترهای انتخاب صحیح فلز پر کننده : الف) فرایند جوشکاری ب) تركيب شيميايي فلزيايه ج) وضعیت جوشکاری د) شرایط کاربردی ه) ميزان نفوذ جوش (عمق نفوذ) و) کیفیت محل جوش ز) هزينه جوش

ح) مهارت جوشکار

ضمیمه <u>۵</u> برای انتخاب الکترود در حالتی که شباهت بین فلزات پایه و پرکننده باشد ، قابل استفاده است. در این جدول سیم جوش و الکترود سازگار با فلز پایه برای فراینده ای مختلف جوشکاری تحت استاندارد آمریکایی ذکر شده است. به هنگام ارائه مشخصات روش جوشکاری توجه به نکات زیر در مورد فلزات برکننده مفید است :

کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

الف) در روش جوشکاری با الکترود دستی ، بیشترین اندازه جوش گلویسی (Fillet) بـا یـک پـاس ،6.4
میلی متر و برای جوشهای شیاری (Groove) نیز 6.4 میلی مــتر اسـت کـه بـا اسـتفاده از الکـترود کـم
هیدروژن E70XX بدست می آید.
ب) در روش جوشکاری زیر پودری ، بیشترین اندازه جوش گلویی یا شیاری قابل اجــرا در یـک پـاس بـا
الكترود F7XX - EXXX ميلي متر است.
ج) در جوشکاری های قوس فلزی با محافظت گاز ، بیشترین اندازه جوش گلویی یا شیاری در یک پاس
با الكترود ER70S-X ، 8 ميلي متر است.
د) در جوشکاری با الکترود توپودری . بیشترین اندازه جوش گلویی یا شیاری در یـک پـاس بـا الکـترود
E7XT-X ، 8 میلی متر است.
ه) الکترودها باید قبل از مصرف خشک شوند. روکش تمام کلاسهای الکترود تقریباً کم هیدروژن است و
به منظور عدم جذب هیدروژن باید کاملاً عایق بندی شوند. در صورت باز شدن روکش عایق بسته های
الكترود ، الكترودها باید قبل از مصرف خشک شوند.
استاندارد مربوط به فلز پر کننده QW-404 می باشد.
موارد پیشنهادی برای ارائه در این قسمت عبارتند از :
() عدد SFA) عدد
۲) شماره AWS (کلاس و طبقه بندی فلز پر کننده)
۳) عدد مشخصهٔ F
۴) عدد مشخصهٔ A
۵) اندازهٔ فلز پرکننده
۶) محدودهٔ ضخامت فلز جوش
۲) کلاس و طبقهٔ فلاکس (پودر جوش)

۸) لایی مصرف شدنی ۹) دیگر موارد \mathbf{C}

حق چاپ و تکتیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

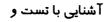
، مهندس لیما هنرمندیان

.....

*کروہ مہندسین ہین المللی جوش ایرا*ن

(SFA No.) SFA عدد (۲-۴-۱

در استاندارد ASME . Sec II . Part C فلزات پر کننده در گروههای مختلفی طبقه بندی وارائه شده انـد . طبقه بندی فلزات پر کننده بر اساس فرایند جوشکاری و ترکیب شیمیایی صورت گرفته است . در جدول <u>۵</u> شمارهٔ مشخصه گروههای مختلف فلزات پرکننده ارائه شده است .


۲-۴-۲) شماره AWS (AWS Class) (AWS Class)

در استانداردهای مختلف ، روشهای متفاوتی برای نام گذاری الکترودها و فلزات پرکننده وجود دارد . در فرم WPS که بر اساس استاندارد ASME . Sec IX ارائه شده ، نام الکترودها براساس نام گذاری استاندارد AWS نوشته می شود. این نام گذاری در استاندارد ASME . Sec II . Part C نیز استفاده شده است.

به عنوان مثال ، برای الکترودهای فولاد کربنی روپوش دار که در SFA-5.1 ذکر شدد اند ، فرم کلی نام الکترودها به صورت EXXXX می باشد. حرف E نشان دهندهٔ و علامت الکتروداست. دو عدد بعد از حرف E نشان دهندهٔ استحکام کششی فلز جوش بر مبنای KSi (کسیلو پوند بر اینچ مربع) است . رقم سوم نشان دهندهٔ وضعیت جوشکاری و رقم چهـــارم نشان دهنـدهٔ کـلاس روپوش الکـترود، نـوع جریان الکتریکی و سایر خصوصیات پوشش می باشد. جـداول <u>۶</u> و <u>۷</u> نحـوهٔ شـماره گذاری الکترودها را نشان میدهند .

(F No.) F عدد مشخصة (۲-۴-۳

عدد مشخصهٔ F در حقیقت یک تقسیم بندی برای فلزات پرکننده (الکترودها و سیم جوشها) است. استفاده از این عدد نیز باعث کاهش تعداد PQR , WPS های لازم و مورد استفاده خواهد شد. جـدول <u>A</u> چگونگی تقسیم بندی F No. را برای فلـزات پرکننـده مختلف و آلیـاژهـای مختلف نشـان مـی دهـد. استاندارد مربوط به عدد مشخصه F ، 24-432 می باشد. در ضمیمه <u>P</u> تقسیم بنـدی عـدد مشـخصهٔ F دیده می شود.

دستورالعمل جوشکاری

کروہ مہندسین ہین المللی جوش ایران

R

شرکت کاوش همایش

€

 \bigcirc

نوع فلز پر کننده	شماره
	مشخصه
مشخصات الکترودهای فولاد کربنی برای جوشکاری قوس الکترود روپوش دار ۲۹۸۹ ک	SFA-5.1
مشخصات سیم جوش فولاد کربنی و کم آلیاژی برای جوشکاری با سوخت گاز (اَسَّنُ رَبَيْلِهِ)	SFA-5.2
مشخصات الکترودهای آلومینیومی و آلیاژهای آن برای جوشکاری قوس الکترود روپوش دار	SFA-5.3
مشخصات الکترودهای فولاد زنگ نزن برای جوشکاری قوس الکترود روپوش دار	SFA-5.4
مشخصات الكترودهاى فولاد كم ألياژى براى جوشكارى قوس الكترود روپوش دار	SFA-5.5
مشخصات الکترودهای روپوش دار مسی و آلیاژهای مس برای جوشکاری قوسی	SFA-5.6
مشخصات الکترود و سیم جوشهای بدون پوشش مسی و آلیاژهای مس	SFA-5.7
مشخصات فلزات پرکننده برای لحیم کاری سخت و لحیم جوشکاری	SFA-5.8
مشخصات الکترود و سیم جوشهای بدون پوشش فولاد زنگ نزن	SFA-5.9
مشخصات الکترود و سیم جوشهای بدون پوشش ألومینیومی و آلیاژهای آن	SFA-5.10
مشخصات الکترودهای نیکلی و آلیاژهای آن برای جوشکاری قوس الکترود روپوش دار	SFA-5.11
مشخصات الکترودهای تنگستنی و الیاژهای آن برای جوشکاری و برشکاری قوسی	SFA-5.12
مشخصات الکترود و سیم جوشهای جوش روکش کاری (Solid Surfacing)	SFA-5.13
مشخصات الکترود و سیم جوشهای بدون پوشش نیکلی و ألیاژهای أن	SFA-5.14
مشخصات الکترود و سیم جوشها برای جوشکاری چدن	SFA-5.15
مشخصات الکترود و سیم جوشهای تیتانیومی و آلیاژهای آن	SFA-5.16
مشخصات الکترود و فلاکس های فولاد کربنی برای جوشکاری قوس-زیرپودری	SFA-5.17
مشخصات الکترود و سیم جوشهای فولاد کربنی برای جوشکاری قوس فلزی با گاز 🕞 🗥	SFA-5.18
مشخصات الکترودهای فولاد کربنی برای جوشکاری قوس با الکترود توپودری	SFA-5.20
مشخصات الکترود و سیم جوشهای جوش روکش کاری مرکب (Composite Surfacing)	SFA-5.21
مشخصات الکترودهای فولاد زنگ نزن برای جوشکاری قوس با الکترود توپودری و سیم جوشهای فولاد	SFA-5.22
زنگ نزن برای جوشکاری قوس تنگستنی	
ا مشخصات الکترود و فلاکس های فولاد کم آلیاژی برای جوشکاری قوس-زیرپودری	SFA-5.23
مشخصات الکترود و سیم جوشهای زیرکنیومی و آلیاژهای آن	SFA-5.24
مشخصات الکترود و فلاکس های فولاد کربنی وکم آلیاژی برای جوشکاری سرباره الکتریکی	SFA-5.25
مشخصات الکترودهای فولاد کربنی وکم آلیاژی برای جوشکاری گاز الکتریکی	SFA-5.26
مشخصات الکترود و سیم جوشهای فولاد کم آلیاژی برای جوشکاری قوس فلزی با گاز	SFA-5.28
مشخصات الکترودهای فولاد کم آلیاژی برای جوشکاری قوس با الکترود توپودری	SFA-5.29
رز ک رو با بر در با ب	SFA-5.30
مشخصات فلاکس برای لحیم کاری سخت ولحیم جوشکاری	SFA-5.31

جدول۵- شماره مشخصات گروههای مختلف فلزات پر کننده (.SFA No) .

شرکت کاوش همایش

آشنا<u>یی</u> با تست و

دستو *ر*العمل جو شکاری

*کروہ مہندسین بین المللی جوش ایرا*ن

ا مهتدین نینا هنرمندیان 🕫

وضعیت های جوشکاری	رقم سوم
جوشکاری در چهار وضعیت تخت ، افقی ، عمودی و سربالا امکان پذیر است .	1
جوشکاری در دو وضعیت تخت و افقی امکان پذیر است .	2
جوشکاری فقط در وضعیت تخت امکان پذیر است .	3

جدول۶- وضعیت های جوشکاری متناسب با رقم سوم نام گذاری الکترودهای فولاد کربنی(SFA-5.1)

(نوع جريان الكتريكي	پوشش الكترود	رقم چهارم
	جريان مستقيم با قطب معكوس (الف) - جريان	پر سلولز ، سدیم (الف) - پر اکسید آهن (ب)	0
	متناوب یا مستقیم با قطب معکوس (ب)		
	جريان متناوب يا مستقيم با قطب معكوس	پر سلولز ، پتاسیم	1
	جريان متناوب يا مستقيم با قطب مستقيم	پر تیتان، سدیم	2
 	جريان متناوب يا مستقيم	پر تیتان ، پتاسیم	3
	جريان متناوب يا مستقيم	پودر آهن ، تيتان	4
	جريان مستقيم با قطب معكوس	کم هیدروژن ، سدیم	5
	جريان متناوب يا مستقيم با قطب معكوس	كم هيدروژن ، پتاسيم	6
	جريان متناوب يا مستقيم	پر اکسید آهن ، پودر آهن	7
	جريان متناوب يا مستقيم با قطب معكوس	کم هیدروژن ، پتاسیم ، پودر آهن	8
	جريان متناوب يا مستقيم	اکسید آهن ، تیتان ، پتاسیم	9

جدول۷- پوشش ها و جریانهای الکتریکی متناسب با رقم چهارم نام گذاری الکترودهای فولاد کربنی

(SFA-5.1)

كروه مهندسين بين المللي يوش ايران/ ١٢٧٩. ****

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد ا

دوره اموز شی 🗝 🗠

شرکت کاوش همایش

آشنایی با تست و

دستو *ر*العمل جو شکار ی

کروہ مہندسین بین العللی جوش ایران

F-No.	کد مربوطه در ASME , Sec. IX	نوع آلياژ سيم جوش
1-6	QW-432	آلیاژهای فولادی
21-25	QW-432	ألومينيوم وألياژهاي Al
31-37	QW-432	مس وألياژهای Cu
41-45	QW-432	نيكل وألياژهاي Ni
51-55	QW-432	تيتانيوم وألياژهاي Ti
61	QW-432	زيركنيوم وألياژهاي Zr
71-72	QW-432	لايه فلز جوش روكش سخت

جدول A – عدد مشخصه F برای آلیاژهای مختلف .

A مربوط به آنالیز فلز جـوش
 A مربوط به آنالیز فلز جـوش
 عدد مشخصهٔ A فقط در مورد آلیاژهای آهنی بکار می رود. عدد مشخصهٔ A مربوط به آنالیز فلز جـوش
 می باشد. براساس کد 5- 404-QW ابتدا آنالیز جوش در هر فرایند به روش زیر محاسـبه شـده و سـپس
 براساس جدول <u>P</u> (24-40) ، عدد مشخصه A تعیین و در فرم WPS نوشته می شود.

الف) برای روش های جوشکاری PAW ، GTAW ، SMAW : ۱- آزمایش برای تشخیص آنالیز جوش انجام شود. ۲- براساس مدرک کیفیت جوش سازنده فلز پرکننده ، آنالیز ارائه شده پذیرفته می شود. در صورت انجام آزمایش ، نمونه باید مشابه آزمایش آنالیز استاندارد سیم جوش باشد.

> ب) برای روش های جوشکاری ESW . GMAW : ۱- از مشخصات ارائه شده توسط سازنده استفاده می شود. ۲- با شرایطی مشابه استاندارد ، نمونه آنالیز تهیه می شود. در هر صورت گاز محافظ باید گاز مورد استفاده در فرایند باشد.

.

€.

te s

E.

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

ج) برای روش جوشکاری SAW : ۱- از مشخصات سازنده تحت شرایط استفاده از فلاکس مشابه فرایند اجرائی ، استفاده می شود. ۲- تحت شرایط کاری نمونه آنالیز تهیه می شود.

Size of filler metals) اندازه فلز پرکننده از لحاظ اقتصادی و عملیات جوشکاری حائز اهمیت است. در انتخاب اندازه الکترود موارد زیر باید مورد توجه قرار بگیرد : الف) طرح اتصال ب) ضخامت لایه های جوشکاری ج) وضعیت جوشکاری د) حرارت داده شده مجاز (Heat input) ه) مهارت جوشکار

قاعده کلی آن است که هرگز نباید از الکترودی که اندازه آن بزرگتر از ضخامت قطعه کار است ، استفاده کرد. الکترود کلفت برای جوشکاری در وضعیت عمودی یا قائم و بالاسری یا سقفی مناسب نیست ، زیــرا کنترل حوضچه جوش حجیم در این شرایط مشکل است. در مورد جوشکاری ورقهای ضخیم با لبه هـای آماده شده بصورت ۷ یا K اولین پاس جوشکاری با الکـترود نازک و پاس های بعـدی با الکترودهـای کلفت تر انجام می شود.

تعداد لایه ها یا پاس های لازم برای پر کردن درز جوش عمدتاً به : طرح اتصال ، اندازه الکترود ، ضخامت فلز پایه ، وضعیت جوشکاری و مهارت جوشکار بستگی دارد.

اندازه مناسب فلز پرکننده برای جوشهای مختلف را می توان بصورت زیر بیان کرد : ۱- برای جوش لوله یا اتصالاتی که احتیاج به ذوب کافی در ریشه جوش دارد و امکان جوشکاری از پشت جوش نیست ، حداکثر قطر الکترود برای پاس اول 3.25 میلی مـتر پیشنهاد می شود. برای جوشکاری پاس های بعدی از الکترودهای به قطر 4.0 , 5.0 میلی متر استفاده می شود. لازم به ذکـر

گروه مهندسین بین المللی	أشنايي با تست و	ا شرکت کاوش
جوش ایران	دستورالعمل جوشكارى	هما <u>ی</u> ش

				Analysis ,	%[Note 1]		
A-No.	Types of Weld Deposit	C	Cr	Mo	Ni	Mn	Si
1	Mild Steel	0.20				1.60	1.00
2	Carbon-Molybdenum	0.15	0.5	0.4-0.65		1.60	1.00
3	Chrome (0.4% to 2%)-Molybdenum	0.15	0.4-2.00	0.4-0.65	•••	1.60	1.00
4	Chrome (2% to 6%)-Molybdenum	0.15	2.00-6.00	0.4-1.50	•••	1.60	2.00
5	Chrome (6% to 10.5%)-Molybdenum	0.15	6.00-10.5	0.4-1.50		1.20	2.00
6	Chrome-Martensitic	0.15	11.0-15.0	0.70	•••	2.00	1.00
(7	Chrome-Ferritic	0.15	11.0-30.0	1.00		1.00	3.00
8	Chromium-Nickel	0.15	14.5-30.0	4.00	7.50-15.0	2.50	1.00
9	Chromium-Nickel	0.30	19.0-30.0	6.00	15.0-37.0	2.50	1.00
10	Nickel to 4%	0.15		0.55	0.8-4.00	1.70	1.00
11	Manganese-Molybdenum	0.17	•••	0.25-0.75	0.85	1.25-2.25	1.00
12	Nickel-Chrome-Molybdenum	0.15	1.5	0.25-0.80	1.25-2.80	0.75-2.25	1.00

NOTE : (1) Single values shown above are maximum.

جدول ۹-آنالیزجوش و عدد مشخصه A برای آلیاژهای فولادی .

. .

•

کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

دوره لموزشی.

- است ، در لوله های با قطر کم پاس اول با الکترود 2.5 میلی متر جوشکاری شده و پاسهای بعدی را با الکترودهای 3.25 , 4.0 میلی متر جوش می دهند. ۲- در جوشکاری اتصالات ۷ شکل یا جناغی یک طرفه که دارای تسمه ای در پشت اتصال می باشند در حالت تخت می توان برای پاس اول از الکترود به قطر 4.0 یا 5.0 میلی متر و برای پاس های
 - بعدی از الکترود های بزرگتر استفاده کرد.
- ۳- برای جوشهای گلویی در حالت تخت و سر به سرغیر تخت ، حداکثر قطر الکترود مصرفی 5.0 میلی متر می می دهند. در متر است. اغلب پاس اول را با الکترودهایی به قطر 3.25 یا 4.0 میلی مـتر جـوش مـی دهند. در جوشهای گلویی با پای جوش کمتر از 10 میلی متر استفاده از الکترود 3.25 . 4.0 میلی متر پیشنهاد می گردد.

۶-۴-۴) محدودهٔ ضخامت فلز جوش (Deposited Weld Metal Thickness Range) در این قسمت از WPS محدوده ضخامت فلز جوش رسوب داده شده درج می شود که تغییر در مقدار آن براساس کد QW-451 تعریف می شود.

۷-۴-۲) کلاس فلاکس (پودر جوش) (Electrode - Flux (Calss)) کلاس فلاکس (پودر جوش) (SFA-5.17) هر گونه مشخصات و استانداردهای مربوط به فلاکس های جوشکاری زیـر پـودری مطـابق بـا SFA-5.17 برای الکترود و فلاکس های فولاد کم آلیـاژ در این قسمت درج می گردد.

۲-۴-۸) لایی مصرف شدنی (Consumable insert) گاهی به منظور حفظ مشخصات طرح اتصال از لایی های مصرف شدنی استفاده می شود. مشخصات این لایی های مصرف شدنی در ASME. Sec II . Part C . SFA-5.30 ذکر شده است. در مواردی که آنالیز

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

مهندس ليما هترمنديان

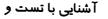
*گروه مهندسین بین المللی جوش ایرا*ن

 \langle

شرکت کاوش همایش

و مشخصات لایی براساس SFA 5.30 است ، .F No نیز باید براساس 432-QW بــا سـیم جــوش مصرفـی هماهنگ باشد.

۲-۴-۹) دیگر موارد (Other)

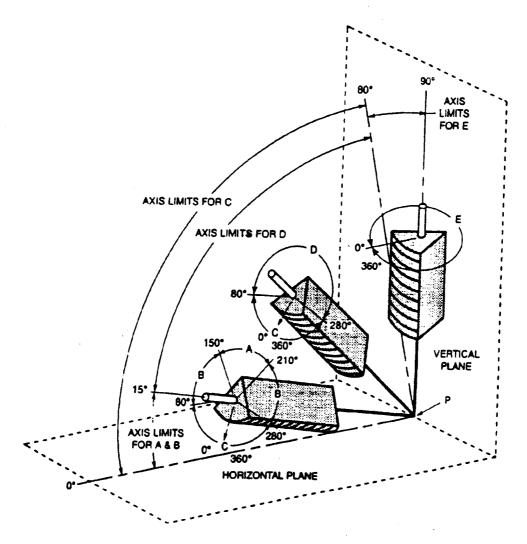

نام تجاری ، کد سازنده و یا دیگر مشخصات فلز پرکننده و لایی مصرف شدنی در این قسمت ذکــر می گردد.

> Positions (QW-405) وضعیت جوشکاری (QW-405) وضعیت جوشکاری در چهار وضعیت کلی قابل انجام است : ۱) تخت Flat ۲) افقی Horizontal ۲) عمودی Vertical

> > ۴) بالا سری Överhead (۴

دوره اموزشی •

استاندارد مربوط به وضعیت جوشکاری ASME . Sec IX می باشد . در استاندارد ASME . Sec IX در کـد QW-461 وضعیت های مختلف جوشکاری ذکر شده است (ضمیمه Y) . شکل های <u>۳و</u> ۶ جهات و زوایای چهار وضعیت جوشکاری را نشان می دهد. موارد پیشنهادی برای ارائه در این قسمت عبارتند از : ۱- وضعیت شیاری یا گلویی


کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

ि

Û

Tabulation of positions of groove welds			
Position		Inclination of axis	Rotation of face
Flat	A	0* to 15*	150° to 210°
Horizontal	8	0° to 15°	80° to 150° 210° to 280°
Overhead	С	0° to 60°	0° to 80° 280° to 360°
Vertical	D E	15° to 80° 80° to 90°	80° to 280° 0° to 360°

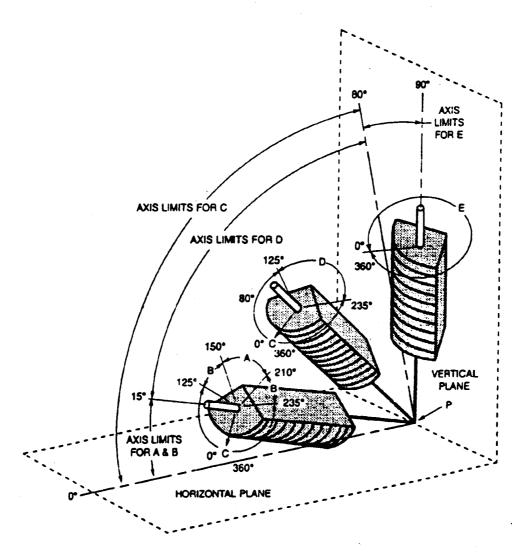
Notes:

مهندس ليما هترمنديان

- The horizontal reference plane is always taken to lie below the weld under consideration. 1.
- 2. The inclination of axis is measured from the horizontal reference plane toward the vertical reference plane.
- 2. The incination of axis is measured multimere noncontainerence plane toward the vertical reference plane.
 3. The angle of rotation of the face is determined by a line perpendicular to the theoretical face of the weld which passes through the axis of the weld. The reference position (0°) of rotation of the face invariably points in the direction of positie to that is which the axis angle increases. When looking at point P, the angle of rotation of the face of the weld is measured in a clockwise direction from the reference position (0°).

Positions of Groove Welds

شکل ۳- وضعیت جوشکاری شیاری .



کروہ مہندسین ہین العللی جوش ایران

£

شرکت کاوش همایش

Tabulation of positions of fillet welds					
Position	Diagram reference	Inclination of sois	Retation of face		
Flat	A	0° to 15°	150° to 210°		
Horizontal	8	0° to 15°	125° to 150° 210° to 235°		
Overhead	c	0° to 80°	0° to 125° 235° to 360°		
Vertical	O E	15° to 80° 80° to 90°	125° to 235° 0° to 380°		

Positions of Fillet Welds

شکل ۴- وضعیت جوشکاری گلویی .

دستو *ر*العمل جو شکاری

کروہ مہندسین ہین المللی جوئں ایران

شرکت کاوش همایش

(```

()

1-۵-۲) وضعیت شیاری یا گلویی (Position (s) of Groove / Position (s) of Fillet) برای وضعیت جوشکاری علائم اختصاری پیشنهاد شده که در جدول <u>۱۰</u> دیده می شوند. وضعیت جوشکاری بستگی به : نوع فرایند جوشکاری ، قابلیت دسترسی خطوط جوش ، ابعاد و اندازه قطعه کار ، نحوه ساخت و امکانات موجود دارد.

جوشکاری گلویی لوله		جوشکاری گلویی ورق		جوشکاری شیاری لوله		جوشکاری شیاری ورق	
علامت	وضعيت	علامت	وضعيت	علامت	وضعيت	علامت	وضعيت
l F- Rotated	لوله مورب با چرخش	۱F	تخت	IG-Rotated	چرخش افقىلول	IG	تخت
2F	لوله ثابت عمودی	2F	افقی	2G	لوله در حالت عمودی	2G	افقى
2FR	لوله افقی با چرخش	3F	عمودى	5G	لوله افقى ثابت	3G	عمودى
4F	لوله ثابت عمودی ، جوش بالا سری	-4F	بالاسرى	6G	لوله مورب ثابت	4G	بالاسرى
5F	لوله افقی ثابت (تمامی وضعیت ها)			6GR	لوله مورب با پخ T.K.Y		

Son in Saist Certificates & Standard (Ase

جدول ۱۰ – علائم اختصاری وضعیت های جوشکاری .

(Welding Progression) جهت پیشروی (T-۵-۲

در این قسمت جهت پیشروی جوشکاری ذکـر مـی گردد ، کـه عمدتـاً بـرای جوشـهای عمـودی جـهت پیشروی از پائین به بالا (Upward) می باشد.

۲-۶) پیشگرم (Preheat (QW-406)

دوره لموزشی

معمولاً برای جلوگیری از ترکیــدگی ، پیچیـدگی و اعوجـاج ، پیدایـش فازهـای ناخواسـته و ... قبـل از جوشکاری ، قطعه کار پیشگرم می شود. همچنین در حین عملیات جوشکاری ، کنترل دمای بین پاسـها

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

، مهندس نيما هنرمنديان

 C^{3}

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

برای جلوگیری از کاهش دمای قطعه کار به کمتر از دمای پیشگرم و بالا رفتن از حد مجاز – دمای بازگشت نهایی (Tempering) – لازم است. این عمل توسط گچ های حرارتی صورت می پذیرد. بنا به تغییر رنگ و یا ذوب شدن گچ های حرارتی در درجه حرارتی خاص ، دمای قطعه کار قابل کنترل است. حداقل دمای پیشگرم و دمای بین پاسی براساس ضمیمه <u>۸</u> و با توجه به ضخامت ورق مربوطه تعیین می شود. البته در استاندارد Sec VIII یا SSME . Sec ک مای پیشگرم برای فلزات مختلف با توجه به ضخامت پیشنهاد شده است. در صورتیکه درجه حرارت محیط کمتر از ۲۰۵۵- باشد انجام عملیات جوشکاری صحیح نیست. دمای پیشگرم باید حداقل به فاصله 5.62 میلی متر (3 اینچ) در اطراف محل جوش ثابت باشد. استاندارد مرتبط با پیشگرم 600-QW می باشد. موارد پیشنهادی برای ارائه در این قسمت عبارتند از : ۲- حداکثر دمای پیشگرم

۳- نگهداری پیشگرم

1-۶-۲) حداقل دمای پیشگرم ((Preheat Temp. (min)) محاقل دمای پیشگرم (Preheat Temp.) همانطور که قبلا" ذکر شد ، درجه حرارت پیشگرم با توچه به جنس قطعه و ضخامت آن و با استفاده از ضمیمه ۸ تعیین می شود. لازم به ذکر است در صورت تفاوت مقدار پیشگرم لازم برای دو فلز پایه ، حداقل دمای پیشگرم برای جوشکاری ، بالاترین دمای پیشگرم بین دو قطعه است.

۲-۶-۲) حداکثر دمای بین پاسی ((Interpass Temp. (max)) حداکثر دمای این حداقل درجه حرارت بین پاسی نیز مطابق با جدول موجود در ضمیمه ۸ تعیین می شود. حداکثر دمای بین پاسی نیز حداکثر دمای از گشت نهایی (Tempering) فلز پایه می باشد. به عنوان مثال حداکثر دمای بین پاسی برای فنزات موجود در این P No.: ۱

۳-۶-۳) نگهداری پیشـگرم (Preheat Maintenance) محدوده حرارتی که WPS در اثر تغییرات پیشگرم در آن صدق می کند ، در این قسمت ذکر میشود.

دستو *ر*العمل جو شکاری

محروه مهندسين بين المللي جوش ايران

(E

Ú,

شرکت کاوش همایش

موارد پیشنهادی برای ارائه در این قسمت عبارتند از : ۱- محدودهٔ دما ۲- محدودهٔ زمان

۳- دیگر موارد

۱–۷–۷) محدودهٔ دما (Temperature Range)
رایج ترین عملیات حرارتی، تنش زدایی پس از جوشکاری است. موارد زیر در تنش زدایی لحاظ می شود:
الف) در مورد فولادهای کوئنچ – تمپر شده حداکثر دما (⁻⁰ 1100) ⁻⁰ 590° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 500° – 590° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 500° – 590° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 500° – 590° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 500° – 590° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 650 – ⁻¹ 500° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 650 – ⁻¹ 500° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 650 – ⁻¹ 500° (.
ب) برای سایر فولادها محدوده دمایی (⁻¹ 200° ۲ – 011) ⁻⁰ 650 – ⁻¹ 500° (.
ب) برای ⁻¹ 200° ۲ – 200°

قطر لوله بر حسب میلی متر است ، ضخامت معادل مقطع محاسبه شده و پس از مقایسه ضخامت مقطع حقیقی قطعه با مقدار محاسبه شده براساس بزرگترین مقدار بین این دو مقدار ، زمـان نگهـداری و نـرخ سرمایش و گرمایش بدست می آید.

۲-۷-۲) زمان نگهداری (Time Range) زمان نگهداری برای تنش زدایی بسته به ضخامت قطعه تغییر می کند. معمولاً زمان نگهداری فولادهـای کوئنچ – تمپـر با توجه به کمتر بودن درجه حرارت ، بیش از دیگر فولادهاست.

وره لموزنتي 😁 👘 کروه مهندسين بين المللي جوش ايران/ ١٣٧٩ 👘 مهندس لينا هترمنديان 🗧

شرکت کاوش همایش

Post weld Heat Treatment (QW-407) (Post weld Heat Treatment (QW-407) (Post weld Heat Treatment (QW-407) است. برای عملیات حرارتی پس از جوشکاری عمدتاً عملیات تنبش زدایی (Stress Relieving) است. برای جوشکاری فولادهای پر کربن ، عملیات حرارتی پس از جوشکاری به اندازه پیشگرم اهمیت دارد. عملیات حرارتی پس از جوشکاری پس از جوشکاری به اندازه پیشگرم اهمیت دارد. عملیات درارتی پس از جوشکاری بستگی به : ترکیب شیمیایی ، ضخامت ، شکل اجراء و شرایط کاری قطعه دارد. استاندارد مربوط به PWH ، 70-407 می باشد. در این کد عملیات حرارتی پس از جوشکاری بس از جوشکاری بی از جوشکاری قطعه دارد. استاندارد مربوط به PWH ، 70-407 می باشد. در این کد عملیات حرارتی پس از جوشکاری برای موادی با از جوشکاری بی و PNO.: 1.3.4.5.6.9.10.11

الف) بدون PWHT

دوره لموزشی

C

ب) PWHT زیر درجه حرارت استحاله پائینی
 ج) PWHT بالای درجه حرارت استحاله بالایی (مانند نرماله کردن)
 د) PWHT بالای درجه حرارت استحاله بالایی به همراه عملیات حرارتی ثانویه زیر درجه حرارت استحاله پائینی (مانند کوئنچ – تمپر)

ه) PWHT بین درجه حرارت استحاله بالایی و پائینی.

برای دیگر مواد ، PWHT بصورت زیر است : الف) بدون PWHT

ب) PWHT در یک محدوده درجه حرارت مشخص

در استاندارد ASME ، Sec I ، بخش PW و در کد ASME ، Sec VIII در بخش UHA . UCS نیز در جداولی مقادیر درجه حرارت و زمان نگهداری عملیات حرارتی برای اعداد مشخصه P نشان داده شده است (ضمیمه ۹) .

مهندس نيما هترمنديان

€

િ

شرکت کاوش همایش

در جداول ۱۲<u>و۱۲</u> به ترتیب حداقل زمان نگهداری قطعه در کوره جهت تنش زدایی و میزان افزایش زمان نگهداری به ازای کاهش دمای عملیات حرارتی ذکر شده است.

مساوی و کمتر از 1⁄4 اینچ (6.4 mm)	¼ in − 2 in (6.4-51 mm)	بالای2 اینچ(51 mm)	حداكثر ضخامت مقطع
15 min	1 hr/in	2 hr ، به ازای هر اینچ 15دقیقه اضافه می شود	زمان نگهداری

جدول ۱۱- حداقل زمان نگهداری در کوره جهت تنش زدایی .

112 (200)	84 (150)	56 (100)	28 (50)	میزان کاهش دما (^C (F°)
10	5	3	2	زمان نگهداری به ازای هر اینچ (hr)

جدول ۱۲- میزان افزایش زمان نگهداری به ازای کاهش دمای عملیات .

۳-۷-۳) **دیگر موارد (Other)** در این قسمت می توان به نکاتی چون نرخ گرم یا سرد کردن ، عملیات حرارتی مطلوب ، نیاز به عملیات حرارتی ثانویه و اشاره کرد.

Gas (QW-408) گاز (Av-408) Gas (QW-408) گاز (Av-408) گاز وظایف مهم گاز محافظ ، حفاظت حوضچه مذاب از آلودگی ناشی از اتمسفر می باشد. متداول ترین گاز مورد استفاده آرگون است. در این قسمت از فیرم WPS ، مشخصات گاز محافظ براساس کد

کروہ مہندسین بین المللی جوش ایران

مهتدس ليما هترمنديان

شرکت کاوش همایش

QW-408 نوشته می شود. در ضمیمه شماره <u>۱۰</u> ترکیب و درصد گازهای مختلف برای آلیاژهای متفاوت ذکر شده است.

> موارد پیشنهادی برای ارائه در این قسمت عبارتند از : ۱) نوع گاز محافظ – کمکی – پشتی ۲) درصد ترکیب گاز محافط – کمکی – پشتی ۳) نرخ جریان گاز محافظ – کمکی – پشتی

Gas (es) پوع گاز محافظ - کمکی – پشتی (Gas (es)) گازهای N2. He. CO2. Ar یا مخلوطی از این گازها برای حفاظت استفاده می شوند. هر یک از این گازها به تنهایی یا بصورت مخلوط با دیگر گازها مصرف می شوند. گاهی برای کاهش ترشح و کمک به برقراری قوس الکتریکی ۱ تا ۵ درصد اکسیژن به این گازها اضافه می شود. انتخاب بهترین گاز محافظ بستگی به : نفوذ و ذوب مورد درخواست ، شکل جوش ، نوع فلز پایه ، شرایط انتقال فلز و سرعت جوشکاری دارد. جدول <u>۱۳</u> گازهای مورد استفاده برای فلزات مختلف را نشان می دهد.

۲-۸-۲) درصد ترکیب مخلوط گاز محافظ-کمکی – پشتی (Mixture) در این قسمت درصد ترکیب مخلوط گازهای تشکیل دهنده گاز محافظ – کمکی یا پشتی ارائه می شود. ترکیب گاز بر روی شکل ، نفوذ و پهنای جوش تاثیر می گذارد. (ضمیمه ۱۰)

۳-۸-۳) نرخ جریان گاز محافظ - کمکی - پشتی (Flow Rate) نرخ جریان گاز بر حسب زمان / لیتر سنجیده می شود و باید به نحوی تنظیم گردد که علاوه بر محافظت کامل حوضچه مذاب ، باعث اختلاط شدید مذاب و خروج از حوضچه نشود. نرخ جریان گاز به قطر نازل و شکل جوش بستگی دارد. در حالت کلی این مقدار در حدود lit/min 5-15 است.

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩

دورہ اموزشی

شرکت کاوش همایش

ا شنایی با تست و

دستو*ر*العمل جوشکا*ر*ی

کروہ مہندسین ہیں العللی جوش ایران

	گاز محافظ				
CO ₂	O ₂	He	Ar	نوع انتقال فلز 💴	نوع فلز
-	_	-	X	قوس باز	آلومينيوم
-	_	-	X	اتصال كوتاه	منيزيم
-	-	X	X	اتصال كوتاه	آلیاژهای نیکل
-	X	-	X	قوس باز	i S de N à
x	-		X	اتصال كوتاه	فولادهای کربنی
x	-	-	-	قوس باز	فولادهای کم ألیاژ
-	X	-	х	اتصال كوتاه	فوددهای نم الیار
x	-	X	x	قوسی باز	فولادهای زنگ نزن
x	-	X	X	اتصال كوتاه	Stainless Steel

تذكر:


۱-اکسیـژن دارای مفهوم درصـد اکسیـژن موجود درمخـلوط گاز است که معمـولاً بین ۱ تا ۵ درصــد می باشد.

۲-گاز CO2 دارای مفهوم درصد CO2 موجود درمخلوط گازاست که معمولاً ۲۵ درصد یا کمترمی باشد.

جدول ۱۳- گازهای محافظ برای انواع فلزات .

Electrical Characteristic (QW-409) مشخصات الكتريكي (۲-۹

تغییر در نوع و قطبیت جریان الکتریکی ، افزایش در گرمای ورودی و یا افزایش حجم و میزان فلز جوش رسوب داده شده در واحد طول ، باعث تغییر در کیفیت جوش می شود. میزان گرمای وارده از رابطه زیر قابل مقایسه است. $\int_{0}^{1} \frac{1}{S} = \delta_{0} V.I$

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

۷- سرعت تغذیه سیم جوش

وره أموزشي

کروہ مهندسین بین المللی جوش ایران

همچنین میزان فلز جوش با افزایش اندازه گرده جوش و یا کاهش طول خط جوش به ازای هر الکترود ، متناسب است. مشخصات الکتریکی براساس کد QW-409 می باشد. موارد پیشنهادی برای ارائه در این قسمت عبارتند از : ۱- نوع جریان ۲- قطبیت ۳- آمپر ۴- امپاز و نوع الکترود و تنگستن ۶- نوع انتقال فلز مذاب

Current AC or DC) نوع جریان (Current AC or DC) نتیجهٔ بهتری بدست می دهند. در صورت استفاده از برخی الکترودها با جریان DC و برخی با جریان AC نتیجهٔ بهتری بدست می دهند. در صورت استفاده از جریان DC ذکر قطبیت نیز الزامی است. برای انتخاب جریان می توان به توصیه سازندگان فلز پرکننده مراجعه کرد. باید توجه داشت که شروع قوس با AC مشکلتر است.

(Polarity) قطبيت (Y-۹-۲ در صورت انتخاب جریان DC باید قطبیت را نیز مشخص کرد. قطبیت مسی تواند مستقیم یا معکوس باشد. در قطبیت مستقیم ، الکترود به قطب منفی و قطعه کار به قطب مثبت وصل می شود. در این حالت به علت تمرکز حرارتی کمتـر روی الکترود میـزان کمتری از الکترود ذوب شده و نفوذ نــیز کمـتر می شود. در قطبیت معکوس ، الکترود به قطب مثبت و قطعه کار به قطب منفی وصل می شود و این باعث تمركز حرارت روى الكترود ، ذوب و نفوذ بيشتر مي گردد. علائم اختصاري زيـر قطبيـت را نشـان می دهند.

کروہ مہندسین بین المالی جوش ایرا*ن/* ۱۳۷۹

الا مهندس ليبا هنرمنديان •

(...

دستورالعمل جوشکا*ر*ی

شرکت کاوش همایش

€े

0

الف) اتصال الكترود به قطب مثبت در جريان DC :

DCEP : Direct Current Electrode Positive DCRP : Direct Current Reverse Polarity

ب) اتصال الكترود به قطب منفى در جريان DC :

DCEN : Direct Current Electrode Negative DCSP : Direct Current Straight Polarity

Amps (Range) شدت جریان (Amps) میزان نفوذ و شدت جریان تعیین می شود. بسته به نوع فرایند ، قطر الکترود ، سرعت حرکت ، میزان نفوذ و شدت جریان تعیین می شود. در جدول <u>۱۴</u> میزان شدت جریان برای فرایندهای مختلف برحسب قطر الکترود ارائه شده است.

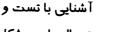
Volts (Range) ولتاژ (ستگاه معمولاً بصورت مدار باز اندازه گیری می شود. دستگاههای جوشکاری دستی در اقسام ولتاژ دستگاه معمولاً بصورت مدار باز اندازه گیری می شود. دستگاههای جوشکاری زیر پودری نیز در همین مختلف 20-24 ولت و 50-60 ولت موجود می باشند. دستگاههای جوشکاری زیر پودری نیز در همین ولتاژ کار می کند (30-40 ولت) . در حین جوشکاری با کوتاه بلند شدن قوس ، ولتاژ تغییر می کند.(جدول <u>۱۴</u>)

۵-۹-۲) اندازه و نوع الکترود تنگستن (Tungsten Electrode Size and Type) در فرایند GTAW ، الکترود تنگستن مصرف نشدنی است. این الکترود با توجه به نقطه ذوب بالا در حین جوشکاری ، ذوب نمی شود. الکترودهای تنگستن در سه گروه تقسیم می شوند. : تنگستن خالص ، تنگستن – زیرکونیوم ، تنگستن – توریم. متداولترین الکترود مصرفی برای فولادها ، الکترود تنگستن – توریم است که در آن 0.8 تا 2.2 درصد توریم به تنگستن اضاف شده است. توریم باعث برقرار شدن آسان تر قوس و برقرار ماندن قوس می شود. قطر الکترود تنگستن براساس شرایط کاری تعیین می شود.

دستورالعمل جوشکا*ر*ی

کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش


GTAW					
Tungusten Size (mm)	Current (A)	Volts(V)	Travel Speed (Cm/min.)		
· 1	50-80	7-13	5-10		
1.6	60-140	7-13	5-10		
2.4	80-160	7-13	5-10		
3.2	150-300	7-13	5-10		
4.0	250-500	7-13	5-10		

			SMAW		
Position	Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)
	2.5		80-120	16-20	10-20
Flat &	3.2	AC or DCRP	110-150	18-22	10-20
Horizontal	4.0		150-200	19-25	10-20
	5.0		200-250	19-25	10-20
	2.5		80-100	16-20	8-13
Vertical &	3.2	AC or	80-120	18-22	8-13
Overhead	4.0	DCRP	100-160	19-25	8-13
	5.0		160-220	19-25	8-13

SAW							
Position	Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)		
	1.2		120-240	20-30	30-50		
	2.4	AC or	250-500	25-35	40-60		
All Position	3.2	DCRP	300-550	30-35	40-60		
	4.0		400-600	30-35	40-60		

GTAW					
Diameter	Polarity	Current (A)	Volts (V)	Travel Speed (Cm/min.)	
1.2		150-220	20-30	10-20	
1.6	DCRP	180-320	20-30	10-20	

جدول ۱۴- شدت جریان الکتریکی مورد استفاده در فرایندهای مختلف جوشکاری .

دستورالعمل جوشکا*ر*ی

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

۹-۹-۲) نوع انتقال فلز مذاب برای GMAW (Mode of Metal Transfer For GMAW) (محافظ بر روی روش انتقال فلز مذاب تاثیر در جوشکاری GMAW، مقدار شدت جریان و ترکیب گاز محافظ بر روی روش انتقال فلز مذاب تاثیر می گذارد. روشهای انتقال فلز مذاب عبارتند از:
اتصال کوتاد (Spray ac) ، اتصال پاششی (Spray ac) و ...
الازم به ذکر است در انتقال فلز به روش پاششی، حرارت بیشتری به فلز انتقال یافته و نفوذ بیشتر می شود ولی در روش انتقال فلز به روش پاششی، حرارت بیشتری به فلز انتقال یافته و نفوذ بیشتر می شود ولی در روش اتصال کوتاه حرارت کمتری به فلز پایه اعمال شده و لذا فلزات ناز کتر را در همه می شود ولی در روش اتصال کوتاه حرارت کمتری به فلز پایه اعمال شده و لذا فلزات ناز کتر را در همه می شود ولی در روش اتصال کوتاه حرارت کمتری به فلز پایه اعمال شده و لذا فلزات ناز کتر را در همه با استفاده از گاز آرگن و یا گاز مخلوطی که درصد بیشتری آرگون دارد و شدت جریان بالاتر ، انتقال فلز بمورت پاششی خواهد بود با کاهش شدت جریان در همین شرایط انتقال بصورت گلوله ای خواهد بود.
در پائین ترین حد محدوده شدت جریان و قطر الکترود ، حالت اتصال کوتاه حاکم است. کمترین شدت جریان بالاتر ، انتقال فلز جریانی ترین که در آن انتقال پاششی رخ می دهد را شدت جریان انتقالی می نامند. در زیر این شدت جریان خوا کر و یا گاز مخلوطی که درصد بیشتری آرگون دارد و شدت جریان بالاتر ، انتقال فلز بصورت پاششی خواهد بود.

تعداد قطرات در واحد زمان زیاد است . جدول <u>۱۵</u> شدت جریان انتقالی برای بعضی فلزات ارائه شده است. در پائین ترین حد محدوده شدت جریان و قطر الکترود ، حالت اتصال کوتاه حاکم است.

Wire Electroie	Wire Eactrode Diameter			Ministran Spray Arc
Туре	ia.		Skielding gas	Current, A
Aid Stad	0.030	8.0	98% argon - 2% oxygen	150
Ald Steel	0.035	0.9	98% argon - 2% coygan	165
Ed Stael	0.045	1.1	98% argon - 2% oxygen	220
Aid Steel	0.082	1.8	98% argon - 2% congen	275
tainiess Steel	0.035	0.9	98% argon - 2% oxygen	170
taining Stan	0.045	1.1	98% argon - 2% oxygen	225
tainless Staal	0.082	1.6	98% argon - 2% anygen	285
Amiran	0.030	0.8	Arpen	85
Loninum .	0.045	1.1	Argon	135
Lininas	0.062	1.6	Argon	180
excident Copper	0.035	0.9	Argoa	180
eoxidized Copper	0:045	1.1	Argon	210
eoxidized Copper	0.082	1.8	Argon	310
Ticon Bronza	0.035	0.9	Argon	165
Sicon Bronze	0.045	1.1	Argon	205
Ticon Bronze	0.062	1.8	Argon	270

Globular-to-Spray Transition Currents for a Variety of Electrodes

ِ جدول 1۵- شدت جریان انتقال از حالت انتقال فلز مذاب گلوله ای به انتقال فلر مذاب پاششی .

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

مهتدس ليما هترمنديان

آشنایی با تست و

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

۲-۹-۲) سرعت تغذیه سیم جوش (Electrode Wire Feed Speed Range)
در این قسمت سرعت تغذیه سیم جوش به حوضچه مذاب تعیین می شود (ضمیمه ۱۰).

۲-۱۰) تکنیک و روش کار (Technique (QW-410) :
 نکات تکنیکی روش جوشکاری براساس استاندارد QW-410 می باشد.

موارد پیشنهادی برای ارائه در این بخش عبارتند از : ۱- گردد (مهره) جوش نواری یا موجی (بافته ای) ۲- سایز کلاهک یا نازل عبور گاز ۳- تمیز کاری اولیه و بین پاسی ۴- روش برداشتن پشت جوش ۸- نوسان ۷- جوش تک پاسه یا چند پاسه در هر طرف ۸- الکترودهای تکی یا چندتایی ۹- سرعت جوشکاری

۱-۱۰-۲) مهره جوش نواری یا بافته ای (String or Weave Bead) در این قسمت شکل گرده (مهره) مورد نظر ذکر می شود. در مواردی که گرده های نازک کافی باشد و یا کمترین حرارت وارده به قطعه لازم است ، از گرده های نواری استفاده می شود زیرا سرعت حرکت دست در این تکنیک بیشتر است. گرده های بافته ای به اشکال گردشی ، هلالی .8 اجرا می شود.

دوره لموزئني

دستو *ر*العمل جو شکاری

کروہ مہندسین بین العللی جوش ایران

مهندس لينا هترمنديان

شرکت کاوش همایش

Ć

۲-۱۰-۲) سایز کلاهک یا نازل عبور گاز (Orifice or Gas Cup Size) در فرایندهای جوشکاری با گاز محافظ ، اشاره به مورد فوق ضروری است. جدول <u>۱۶</u> برای فرایند GTAW مقادیر نازل عبور گاز را ارائه می دهد.

Typical Current Ratings for Gas- and Water-Cooled GTAW Torches

	Terch Size					
Torch Characteristic	Small	Median	Large			
Maximum current (continuous duty), A	200	200-300	500			
Cooling method	Ges	Water	Water			
Electrode diameters eccommodisted, in.	0.020 - 3/32	0.040 - 5/32				
Gas cup diameters accommodated, in.	1/4 - 5/8	1/4 - 3/4	3/8 - 3/4			

جدول ١۶- اندازهٔ نازل وقطر الکترود در جوشکاری GTAW .

۳-۱۰-۲) تمیزکاری اولیه و بین پاسی (برس زدن ، سنگ زدن و)

Initial and Interpass Cleaning (Brushing, Grinding,) تمیه زکردن سطح قبل از انجام جوشکاری مانند زدودن زنگارها (اکسیدها) ، چربسی و کثیفی قطعه ، باعث افزایش کیفیت جوش می شود. همچنین در حین عملیات جوشکاری چند پاسه و در اتمام کار، تمیز کردن سطح اعم از پاک کردن سرباره و ... باعث کاهش و حذف عیوب جوش نظیر سرباره حبسس شده در مذاب خواهد شد.

۲-۱۰-۲) روش برداشتن پشت جوش (Method of Back Gouging)
 در صورت نیاز به جوشکاری از پشت جوش ، لازمست تا ابتدا اولین پاس جوش ، از پشت اتصال توسط یکی از روشهای زیر برداشته شود :
 الف) قوس حاصل از الکترود کربنی
 Air Carbon Arc gouging
 ب) برداشتن بوسیله شعله اکسی استیلن
 Ginding

6

آشنایی با تست و دستو *ر*العمل جو شکاری

شرکت کاوش همایش

Oscillaiton) نوسان (Oscillaiton)

پهنا و فرکانس حرکت نوسانی الکترود در جوشکاری ماشینی یا اتوماتیک در این قسمت ذکر میشود.

۶-۱۰-۲) محدوده فاصله تماس لوله با کار (Contact Tube to Work Distance) این عامل تنها برای فرایندهای GMAW ، GMAW قابل ذکر بوده و عبارتست از : فاصله بین نازل نگهدارنده الکترود جوش با قطعه کار که در حقیقت طول مؤثر الکترود را نشان می دهد.

۷-۱۰-۷) جوش تک پاسه یا چند پاسه در هر طرف (Multiple or Single Pass (Per side) تعداد پاسهای جوشکاری لازم در هر طرف از طرح پخ در این قسمت مطرح میشود. تنها ذکر ، یک یا چند پاسه در این قسمت کافیست.

۸-۱۰-۲) الکترودهای تکی یا چندتایی (Multiple or Single Electrodes) اغلب فرایندها بصورت تک الکترودی استفاده می شود. در فرایند SAW استفاده از چنـد الکـترود نـازک می تواند اقتصادی تر بوده و باعث افزایش نرخ رسوب نسبت به یک الکترود ضخیم گردد.

۹-۱۰-۲) سرعت حرکت ((Travel Speed (Range) این عامل مخصوصاً در جوشکاریهای اتوماتیک اهمیت فراوان دارد. سرعت حرکت عـامل تعییـن کننـده میزان حرارت وارده به قطعه است. عموماً سرعت جوشـکاری بصـورت زمـان / طـول تعییـن مـی شـود. (جدول <u>۱۴</u>)

۱۰-۱۰-۲) چکش کاری (Peening) چکش کاری عملی مکانیکی است ، برای کاهش اثرات سیکل های حرارتی که تناش پسامند زیاد ، اعوجاج و ترک بوجود می آورند. به عبارت دیگر چکش کاری عملی است برای تناش زدایی.

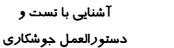
دستو*ر*العمل جوشکا*ر*ی

*کروہ مہندسین ہین المللی جوش ایرا*ن

شرکت کاوش همایش

۱۱-۲) نکات قابل توجه ضمن ارائه روش جوشکاری براساس استاندارد های AWS محدوده ای جهت تعیین روش جوشکاری در هر فرایند وجود دارد که در زیر به آنها اشاره میشود.

۴) حداقل اندازهٔ الکترود مورد استفاده در پاس ریشه باید به اندازه ای باشد که ترک ایجاد نشود.
 ۵) بالاترین ضخامت پاس ریشه در جوشهای شیاری نباید از 6.4 میلی متر تجاوز نماید.


- ۶) حداکثر ضخامت پاس ریشهٔ جوشهای گلویی تک یا چند پاسه نباید از مقادیر زیر تجاوز نماید:
 - ۱-۶) 9.5 میلی متر در وضعیت تخت.

دوره لموزشي.

€

- ۶-۲) 8 میلی متر در وضعیت های افقی و بالاسری.
 - ۳-۶) 12.7 میلی متر در وضعیت عمودی.

مهندس نيما هترمنديلن

شرکت کاوش همایش

l. .

۲) بیشترین ضخامت لایه های بعد از پاس ریشه در جوشکاری های شیاری و گلویی بصورت زیر است :

- ۱-۷) 3 میلی متر برای جوشهایی که در وضیت تخت قرار دارند .
- ۲-۷) 4 میلی متر برای جوشهایی که در وضعیتهای افقی ، بالاسری و عمودی قرار دارند.
- ۸) جهت پیشروی تمامی پاسها در جوشکاری با وضعیت عمودی باید رو به بالا باشد مـگر اینکه هـدف ترمیم سوختگی کناره جوش بوده و پیشگرم مطابق جداول ضمیمه و حداقـل 2°21 در نظـر گرفتـه شود . در مورد جوشکاری مقاطع گرد ، ممکن است جوشـکاری سـر بـالا یـا سـر پـایین شـود . لـذا لازمست جوشکار قبلاً امتحان شده باشد.
- ۹) در جوشکاری شیاری که نیاز به نفوذ کامل است و از پشت بند نیز استفاده نمی شود ، پس از جوشکاری از یک سمت ، پشت جوش با سنگ زنی و... برداشته شده و پس از آن جوشکاری انجام می شود .در جوشکاری لوله هایی با قطر کم که امکان دسترسی به پشت جوش نیست ، باید از شیارهای خاص و الکترودهای پر نفوذ سلولزی استفاده کرد .

۲-۱۱-۲) جوشکاری قوس زیر پودری با یک الکترود

- ۱) منظور از یک الکترود آن است که تنها یک مفتول یا الکترود به یک سیستم مولد نیرو متصل باشد.
 ۲) تمامی جوشهای قوس زیر پودری بجز جوشهای گلویی باید در حالت تخت انجام شوند. جوشهای گلویی گلویی ممکن است در یکی از وضعیت های تخت یا افقی انجام شوند. ضخامت جوشهای گلویی تک پاسه در حالت افقی نباید از 8 میلی متر تجاوز نماید.
- ۳) ضخامت لایه های جوش ، بجز لایه های ریشه و سطحی نباید از 6.4 میلی متربیشتر شود. در صورتیکه اندازهٔ درز اتصال بیش از 12.7 میلی متر باشد ، باید از روش چند پاسه استفاده شود. در صورتیکه پهنای جوش از 15.9 میلی متر بیشتر شود نیز باید از جوشکاری چند پاسه استفاده کرد.
 - ۴) شدت جریان الکتریکی ، ولتاژ قوس و سرعت حرکت باید به گونه ای انتخاب شوند که ذوب کامل فلز پایه و امتزاج آن با مذاب حاصل از سیم جوش ، انجام شده و هیچگونه سر رفتن وسوختگی کناره جوش اتفاق نیفتد.

بیشترین شدت جریان جوشکاری برای شیارهایی که لازمست ذوب در هر دو وجه شیار انجام پذیرد

حق جاب و تکثیر ، محفوظ و متعلق به شرکتّ کاوش همایش می باشد

دستورالعمل جوشکا*ر*ی

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

िे

- ۶۰۰ آمپر باشد ، بجز در آخرین لایه که استفاده از جریانهای بیشتر نیز مجاز است . بیشترین شدت در وضعیت تخت ۱۰۰۰ آمپر می باشد.
- ۲-۱۱-۲) جوشکاری قوس فلزی با گاز محافظ و جوشکاری قوس با الکترود تو پودری (تک الکترود) ۱) حداکثر قطر الکترود برای وضعیت های تخت و افقی 4 میلی متر ، در وضعیت عمودی 2.4 میلی متر و در وضعیت بالاسری 2 میلی متر است .
- ۲) حداکثر اندازهٔ جوش گلویی مجاز در یک پاس برای وضعیت های تخت و عمودی 12.7 میلی متر ، برای وضعیت افقی 9.5 میلی متر و برای و برای وضعیت بالاسری 8 میلی متر است .
- ۳) در فرایند GMAW ضخامت لایه های جوش در حالت پخ سازی شده بجز پاس ریشه و پاس نهایی نباید از 6.4 میلی متر تجاوز نماید . در صورتیکه درز اتصال از 12.7 میلی متر بیشتر باشد ، باید جوشکاری طی چند پاس انجام شود. در مورد پخ هایی که پهنایشان از 15.9 میلی متر بیشتر است ، باید از روشهای چند پاسه استفاده کرد .
 - ۴) در فرایند FCAW ضخامت لایه های جوش در حالت پخ سازی شده بجز پاس ریشه و پاس نهایی نباید از 6.4 میلی متر تجاوز نماید . در صورتیکه درز اتصال از 12.7 میلی متر بیشتر باشد، باید جو شکاری طی چند پاس انجام شود . جو شکاری پخ هایی که در وضعیت های تخت ، افقی یا بالاسری پهنایی بیش از 15.9 میلی متر دارند نیز بصورت چند پاسه انجام می شود .
 - ۵) شدت جریان الکتریکی ، ولتاژ قوس ، نرخ خروج گاز ، نحوهٔ انتقال فلز مذاب و سرعت حرکت باید به گونه ای انتخاب شوند که در هر پاس ، دو طرف پخ بخوبی ذوب شود . ضمناً سر رفتن ، خلل وفرج وسوختگی کناره جوش اتفاق نیفتد.
- ۶) جهت جوشکاری برای وضعیت عمودی باید همواره به سمت بالا باشد. مگراینکه جوشکاری ترمیمی برای رفع سوختگی کنارهٔ جوش انجام شود. پیشگرم مطابق جداول ضمیمه و حداقل ۵°21 در نظر گرفته شود . در مورد جوشکاری مقاطع گرد ، ممکن است جوشکاری سر بالا یا سر پایین شود . لذا لازمست جوشکار قبلاً امتحان شده باشد.

مهتدس ليما هترمنديان

١.

كروه مهندسين بين المللي حوش ايران

مهندس ليما هترمنديان

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

- ۷) در جــوشکاری شیاری که نیاز به نفوذ کـامل است و از پشت بند نیز استفاده نمی شود ، پس از جوشکاری از یک سمت ، پشت جوش با سنگ زنی و ... برداشته شده و پس از آن جوشکاری یک پاس از پشت انجام می شود .
- ۸) فرایند GMAW نباید در معرض باد انجام شود ، مگر اینکه قسمت جوشکاری به گونه ای محافظت شود. محافظ باید به شکلی باشد که مانع افزایش سرعت باد از ۵ مایل بر ساعت در اطراف محل جوش شود.
- ۹) به منظور پیشگیری از ذوب ریشهٔ جوش بهتر است از پشت بندهایی از جنس مس ، فلاکس و ... استفاده شود. بویژه در مواردی که الکترود مصرفی از نوع کم هیدروژن باشد.

۲۱–۲) نکات لازم در نوشتن WPS آنچه تاکنون ارائه شد ، تشریح و نحوه تنظیم یک WPS در حالت کلی بود. براساس استاندارد ASME در هر فرایند ، متغیرهای موجود به سه دسته تقسیم می شوند : متغیرهای اساسی متغیرهای غیراساسی

> ۱۲–۱۲–۲) متغیرهای اساسی (Essential Variables) متغیرهایی که تغییر در آنها باعث نوشتن یک WPS یا PQR جدید می شود.

۲-۱۲-۲) متغیرهای تکمیلی (Supplementary Essential Variables): این متغیرها در صورتی باعث نوشتن یک WPS یا PQR جدید می شوند که در مشخصات فنی اشاره ای به تست ضربه جهت تعیین کیفیت شده باشد.

۲-۱۲-۳) متغیرهای غیرضروری (Nonessential Variables) متغیرهایی که تغییر آنها باعث نوشتن یک WPS یا PQR جدید نمی شود. براساس کد ASME متغیرهای مختلف هر فرایند در کدهای 252-QW تا 262-QW ذکر شده است. نمونه های از این کدها در ضمیمه ۱۱ ارائه شده است.

حق چاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره لموزئنى ر

دستورالعمل جو شکاری

کروہ مہندسین ہین العللی جوش ایران

شرکت کاوش همایش

6

در ابتدا چنین به نظر می رسد که برای هر شکل اتصال باید یک WPS مجزا نوشت اما با استفاده از متغیرهای اساسی می توان چندین طرح اتصال را در یک WPS گنجاند. لذا می توان گفت استفاده از متغیرهای اساسی و تکمیلی باعث کاهش تعداد PQR ، WPS های لازم و مورد استفاده برای یک پروژه می گردد.

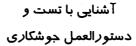
حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره اموزشی.

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

مقدمه


€

هدف از انجام آزمایشات تعیین کیفیت روش جوشکاری آن است که نشان دهیم ، روش جوشکاری تدوین شده (WPS) با اتصالی سالم وبا خواص مکانیکی مطلوب و قابل پذیرش در محدوده استاندارد مربوطه ، بوجود می آورد. نتیجه آزمایشات در فرم خاصی ثبت شده که به آن گزارش کیفیت روش جوشکاری (PQR) Procedure Qualification Record می گویند.

مراحل تهیه PQR چیار مرحله زیر طی می شود : برای تهیه یک PQR چیار مرحله زیر طی می شود : ۱- آماده سازی و جوشکاری نمونه های مناسب ۲- آزمایش نمونه های تهیه شده ۳- ارزیابی نتایج و نتیجه گیری راجع به آماده سازی ، جوشکاری و آزمایشات ۴- ثبت و تائید نتایج (در صورت قابل قبول بودن آنها)

۱-۳) آماده سازی و جوشکاری نمونه های مناسب

معمولاً نمونه ها به نحوی مونتاژ و ساخته می شوند که درز اتصال در وسط نمونه قرار بگیرد. اندازه ، نوع و ضخامت نمونه باید متناسب با نوع و ضخامت موادی که در تولید جوشکاری می شوند و نیز تعداد ، نوع و اندازه نمونه های آزمایشی لازم برای آزمایشات باشد. مواد ، نحوه و جزئیات جوشکاری نمونـه ها باید مطابق با WPS مربوطه باشد ، به عبارت دیگر متغیرهای ضروری باید یکسان باشد. ابعاد و اندازه نمونه ها باید حداقل با مقادیر ذکر شده در استاندارد (ASME. Sec IX, QW-463.1) مطابقت باشد. مطابق با همین استاندارد اندازه و محل نمونه های آزمایش که از نمونه های جوشکاری شده بدست می آیند ، مشخص شده است. در ضمیمه <u>۱۲</u> ابعاد نمونه های جوشکاری شده مطابق با استاندارد (ASME. ASME) مطابقت باشد. مطابق با ارائه شده است. ابعاد و اندازه نمونه های مورد استفاده برای آزمایش در ضمیمه ۱۳ دیده می شود.

شرکت کاوش همایش

÷

۲-۳) آزمایشات مشخصی بر روی نمونه های جوشکاری شده باید انجام شود. نوع و تعداد نمونه هایی که برای آزمایشات مشخصی بر روی نمونه های جوشکاری شده باید انجام شود. نوع و تعداد نمونه هایی که برای تست های مخرب لازم است ، بستگی به استاندارد مورد استفاده و مشخصات کاربردی ویـژه سازه دارد.
اغلب تست های مغیرمخرب نیز انجام می شوند.
آزمایشهای مورد نیاز برای جوشهای شیاری عبارتند از :

آزمایشهای مورد نیاز برای جوشهای شیاری عبارتند از :
آزمایشی کشش با مقطع کاهش یافته برای اندازه گیری استحکام کششی (Tensile test)
آزمایش خمش – ریشه برای سلامت جوش (Root – Bend test)
آزمایش خمش – جانبی برای سلامت جوش (Side – Bend test)
آزمایش خمش – گرده برای سلامت جوش (Tense test)

(All – Weld Metal tension)

تعداد ، نوع و روش آماده سازی نمونه های آزمایش جوش در استانداردهای گوناگون تفاوتهای مختصری با هم دارد که برخی از آنها در مورد جوش سر به سر ورق فولاد کربنی با ضخامت کمتر از 10 میلی مــتر بصورت زیر است :

5

آشنایی با تست و دستو *ر*العمل جو شکاری

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

استاندارد ASME . Sec IX : دو عدد آزمایش کشش عرضی ، دو عدد خمش گرده (۱80[°]) ، دو عدد خمش ریشه (۱80[°]) استاندارد AWS . D1.1 : دو عدد آزمایش کشش عرضی ، دو عدد خمش گرده (۱80[°]) ، دو عدد خمش ریشه (۱80[°]) ، آزمایش غیرمخرب استاندارد BS4870 : یک آزمایش کشش عرضی ، یک خمش گرده (۱80[°]) ، یک خمش ریشه (۱80[°]) ، سختی سنجی مقطع ، مطالعهٔ مقطع عرضی ، آزمایش غیرمخرب

1-۲-۳) جوشهای شیاری با نفوذ کامل

تعداد و نوع نمونه هایی که مطابق با کد DI.I . AWS جهت تائید کیفیت جوش باید مورد آزمایش قـرار بگیرند ، در جدول <u>۱۷</u> درج شده است. تعداد و نوع نمونه ها به ضخـامت ورق بسـتگی دارد. نکتـه قـابل توجه در این جدول آن است که ، بسته به ضخامت طرح جوش می تـوان از یـک ورق نمونـه آزمایشی، برای سنجش کیفیت محدوده ای از ضخامتها استفاده کرد. در مورد لوله نیز معیار آزمایش ها ، قطر لوله و ضخامت لوله است.

تعداد و نوع آزمایشات لازم جهت تعیین کیفیت جوش براساس استاندارد ASME, Sec IX برای جوشهای شیاری در ASME, Sec IX (ضمیمه <u>۱۴</u>) ارائه شده است.

نمونه ، آزمایشهای غیر مخرب ورق و جوش دور تا دور لوله ها براساس ASW.D1.1 . Sec 6.Part C . E. F

ب) بهتر است برای قابل قبول تر شدن نتایج آزمایشها و اطمینان از حصول کیفیت ، پس از تائید نمونه توسط اولتراسونیک یا رادیو گرافی ، آزمایشهای زیر نیز بر روی نمونه انجام شود :

(

دستو *(*العمل جو شکاری

شرکت کاوش همایش

WPS Qualification---Complete Joint Penetration Groove Welds: Number and Type of Test Specimens and Range of Thickness and Diameter Qualified (see 4.4) (Dimensions in Millimeters)

		Number of :	Specimens	Pipe or Tu	inal Plate, ibe Thickness ^{3, 4} lified, mm		
Nominal Plate Thickness (T) Tested, mm	Reduced Section Tension (see Fig. 4.14)	Root Bend (see Fig. 4.12)	Face Bend (see Fig. 4.12)	Side Bend (see Fig. 4.13)	Min	Max	
3.2 S T S 9.5	2	2	2		3.2	2T]
9.5 < T < 25.4	2	-		4	3.2	2T	
25.4 and over	2	-	_	4	3.2	Unlimited	
 2. Tests on Pipe	c or Tubing ^{1,7}						
			<u></u>				Nominal Plate, Pipe or Tube Wall

				Number of	Specimens		Nominal	Pipe o Thi	r Tube Wall ckness ^{3, 4} lified, mm
	Nominal Pipe Size or Diam., mm	Nominal Wall Thickness, T. mm	Reduced Section Tension (see Fig. 4.14)	Root Bend (see Fig. 4.12)	Face Bend (see Fig. 4.12)	Side Bend (see Fig. 4.13)	Diameter ³ of Pipe or Tube Size Qualified, mm	Min	Max
		3.2 ≤ T ≤ 9.5	2	2	2	_	Test diam. ⁻ and over	3.2	2Т
	< 610	9.5 < T < 19.0	2	_		4	Test diam. and over	T/2	2T
Job Size Test Pipes		T ≥ 19.0	2	-	_	4	Test diam. and over	9.5	Unlimited
		3.2 ≤ T ≤ 9.5	2	2	2	-	Test diam. and over	3.2	2T
	≥610	9.5 < T < 19.0	2		-	4	610 and over	T/2	2T
		T ≥ 19.0	2			4	610 and over	9.5	Unlimited
Standard	50 mm OD × or 75 mm OD	5.5 mm WT x 5.5 mm WT	2	2	2	. —	19 through 100	3.2	19.0
Test Pipes	150 mm OD × or 200 mm OD :	14.3 mm WT × 12.7 mm WT	2	·	-	4	100 and over	4.8	Unlimited

3. Tests on Electroslag and Electrogas Welding^{1,8}

		Number of S	Specimens			Plate Thickness valified
Nominal Plate Thickness Tested		All-Weld- Metal Tension (see Fig. 4.18)	Side Bend (see Fig. 4.13)	Impact Tests	Min	Max
T	2	1	4	Note 6	0.5T	1.17

Notes:

1. All test plate, pipe or tube welds shall be visually inspected (see 4.8.1) and subject to NDT (see 4.8.2). One test plate, pipe or tube shall be required for each qualified position

2. See Figures 4.10 and 4.11 for test plate requirements.

3. For square guose welco that are qualified writest backgouging, the maximum thickness qualified shall be limited to the test plate thickness.

4. CIP groove weld qualification on any thickness or diameter qualifies any size of fillet or PJP groove weld for any thickness.

5. Qualification with any pipe diameter qualifies all box section widths and depths.

6. If specified, impact tests shall conform to Annex III.

7. See Table 4.1 for the grouve details required for qualification of tubular butt and T-, Y+, K-connection joints.

8. See Figure 4.9 for plate requirements.

جدول ۱۷- تعداد ونوع نمونه های آزمایش کیفیت جوش برحسب ضخامت .

1 ·

دوره لموزشي

کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

۲-۱-۲-۳) آزمایشات مکانیکی

Ð

Ć

دوره اموزشی 🖉

۱- بازرسی چشمی ۲- آزمایش ذرات مغناطیسی برای تشخیص ترک ۳- آزمایش مایعات نافذ برای تشخیص ترک های سطحی

نمونه هایی که مطابق بخش قبل مورد تائید آزمایشات غیرمخرب قرار گرفته باشند مطابق با ضمیمه <u>۱۳</u> بریده و برای تست های مکانیکی نمونه های لازم مطابق با ابعاد استاندارد تهیه شده و مورد آزمایش قرار می گیرند.

آشنایی با تست و

دستو *ر*العمل جو شکاری

در صورتیکه جنس و خصوصیات مکانیکی دو فلز پایه یا الکترود و فلز پایـه متفـاوت باشـد ، بـهتر اسـت بجای آزمایش خمش عرضی (سطح و ریشه) از آزمایشات خمش طولی سطح و ریشه استفاده شود.

۲-۲-۳) جوشهای شیاری با نفوذ جزئیی جوش تعداد و نوع نمونه های لازم جهت تعیین کیفیت جوشهای شیاری با نفوذ جزئیی جـوش در جـدول <u>۱۸</u> ارائه شده است.

	Numb	er of Specimer]				
Macroetch for	Reduced-					Qualification R	anges ^{3, 4}
Weld Size (E) 4.10.2 4.10.3 4.10.4	Section Tension (see Fig. 4.14)	Root Bend (see Fig. 4.12)	Face Bend (see Fig. 4.12)	Side Bend (see Fig. 4.13)	Groove	Nominal Plate, Pipe or Tu Plate Thickness, in. (mn	
					Depth	Min	Max
3	2	2	2		т	1/8 (3.2)	21
3	2		_	4	Т	1/8 (3.2)	Unlimited
	Weld Size (E) 4.10.2 4.10.3	Macroetch for Reduced- Weld Size (E) Section 4.10.2 Tension 4.10.3 (see Fig.	Macroetch for Reduced- Weld Size (E) Section 4.10.2 Tension Root Bend 4.10.3 (see Fig. (see Fig. 4.10.4 4.14) 4.12)	Weld Size (E)Section4.10.2TensionRoot BendFace Bend4.10.3(see Fig.(see Fig.(see Fig.4.10.44.144.124.12	Macroetch for Weld Size (E)Reduced- Section4.10.2Tension (see Fig.Root Bend (see Fig.Face Bend (see Fig.Side Bend (see Fig.4.10.3(see Fig. (see Fig.(see Fig. (see Fig.(see Fig. (see Fig.4.10.44.14)4.12)4.12)4.13)3222-	Macroetch for Weld Size (E) Reduced- Section 4.10.2 Tension Root Bend Face Bend Side Bend 4.10.3 (see Fig. (see Fig. (see Fig. Groove 4.10.4 4.14) 4.12) 4.12) 4.13) Depth 3 2 2 2 T	Macroetch for Weld Size (E)Reduced- SectionQualification R.4.10.2Tension TensionRoot Bend (see Fig. 4.10.3Face Bend (see Fig. 4.12)Side Bend (see Fig. 4.13)Nominal Plate Plate Thick3222-T1/8 (3.2)

Number and Type of Test Specimens and Range of Thickness Qualified— WPS Qualification; Partial Joint Penetration Groove Welds (see 4.10)

BASIC REQUIREMENTS

مهتدس نيما هترمنديان

Notes:

1. One test plate, pipe or tubing per position shall be required. See Figures 4.10 or 4.11 for test plate. Use the production PJP groove detail for qualification. All plates, pipes or tubing shall be visually inspected (see 4.8.1)

2. If a partial joint penetration bevel- or J-groove weld is to be used for T-joints or double-bevel- or double-J-groove weld is to be used for corner joints, the butt joint shall have a temporary restrictive plate in the plane of the square face to simulate a T-joint configuration.

3. See the pipe diameter qualification requirements of Table 4.2.

4. Any PJP qualification shall also qualify any fillet weld size on any thickness.

جدول ۱۸- تعداد ونوع نمونه های آزمایش کیفیت جوش شیاری با نفوذ جزئی .

کروہ مہندسین ہیں المللی جوش ایران

آشنایی با تست و دستو*ر*العمل جوشکاری

شرکت کاوش همایش

بهتر است که نمونه مشابه شرایط WPS پخ زنی و جوشکاری شود. البتـه نیـاز بـه انجـام آزمـایش بـرای جوشهای با نفوذ بیش از یک اینچ نیست. برای جوشهای T و گوشه (Corner) نمونه به شکل سربه سر و با در نظر گرفتن Root Face کافی شبیه سازی می شود . سپس نمونه جوشها به صـورت زیـر آزمـایش می شوند :

الف)برای کلیه جوشهایی که WPS آنها مطابق کد AWS تنظیم شده است ، سه نمونه از مقطع جـوش برای آزمایش ماکرواچ مورد نیاز است. اندازه مؤثر ساق جوش مشاهده و با ملاحظات طراحی مقایسه مـی شود.

ب) در صورتیکه بخواهیم از نتایج تعیین کیفیت جوش و اتصال شیاری با نفوذ کامل در مورد اتصال میاری با نفوذ جزئی استفاده کنیم ، سه نمونه از مقطع جوش برای آزمایش ماکرواچ نیاز است.

ج) اگر شرایط جوشکاری با هیچ یک از موارد فوق الذکر سازگار نباشد ، ابتدا نمونه ای با شیار مشابه تهیه و جوشکاری نموده ، سپس مقطع جوش را با آزمایش ماکرواچ مطالعه می کنیم تا ساٰق جوش به اندازه کافی باشد. پس از آن از پشت نمونه تا رسیدن به ضخامت مؤثر ساق جوش ، ماشینکاری کرده و از قسمت باقیمانده ، نمونه های آزمایش خمش و کشش تهیه می کنیم. نحوه تهیه نمونه ها شبیه جوشهای شیاری با نفوذ کامل است.

۳-۲-۳) جوشهای گلویی (Fillet)
نوع و تعداد نمونه جوشهای مورد نیاز جهت تعیین کیفیت جوشهای گلویی براساس AWS. DI.I در
جدول <u>۱۹</u> ارائه شده است.
استاندارد ASME بخش 4 . 451.3 QW-451.3 نیز به تعیین کیفیت جوشهای گلویی می پردازد. (ضمیمه <u>۱۴</u>)
. نمونه آزمایش جوش گلویی نیز مطابق با 462-40 (ضمیمه <u>۱۳</u>) تهیه می شود.
در مورد یک سازه تهیه دو نمونه جوش گلویی کافیست :
الف) یک آزمایش از جوش گلویی جند پاسه در حداکثر اندازه .

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دستو *ر*العمل جو شکار ی

20

شرکت کاوش همایش

0

Number and Type of Test Specimens and Range of Thickness Qualified— WPS Qualification; Fillet Welds (see 4.11.1)

,			Test	Specimens Requir	ed ²	Sizes	Qualified
Test Specimen	Fillet Size	Number of Welds per WPS	Macroetch 4.11.1 4.8.4	All-Weld-Metal Tension (see Figure 4.18)	Side Bend (see Figure 4.13)	Plate/Pipe Thickness ¹	Fillet Size
Plate T-test	Single pass, max size to be used in construction	l in each position to be used	3 faces		_	Unlimited	Max tested single pass and smaller
(Figure 4.19)	Multiple pass, min size to be used in construction	l in each position to be used	3 faces	<u></u>	_	Unlimited	Max tested multiple pass and larger
Pipe T-test ³	Single pass, max size to be used in construction	1 in each position to be used (see Table 4.1)	3 faces (except for 4F & 5F, 4 faces req'd)	-		Unlimited	Max tested single pass and smaller
(Figure 4.20)	Multiple pass, min size to be used in construction	1 in each position to be used (see Table 4.1)	3 faces (except for 4F & 5F, 4 faces req'd)	-		Unlimited	Min tested multiple pass and larger
Groove test ⁴ (Figure 4.23)		l in 1G position	_	1	2	•	ing consumables a T-test above

Notes:

1. The minimum thickness qualified is 1/8 is. (3.2 mm).

2. All welded test pipes and plates shall be visually inspected per 4.8.1

3. See Table 4.2(2) for pipe diameter qualification.

4. When the welding coasumables used do not conform to the prequalified provisions of section 3, and a WPS using the proposed welding consumables has not been established by the contractor in accordance with either 4.9 or 4.10.1, a complete joint penetration groove weld test plate shall be welded in accordance with 4.9.

جدول ۱۹- تعداد ونوع نمونه های آزمایش کیفیت جوش گلویی .

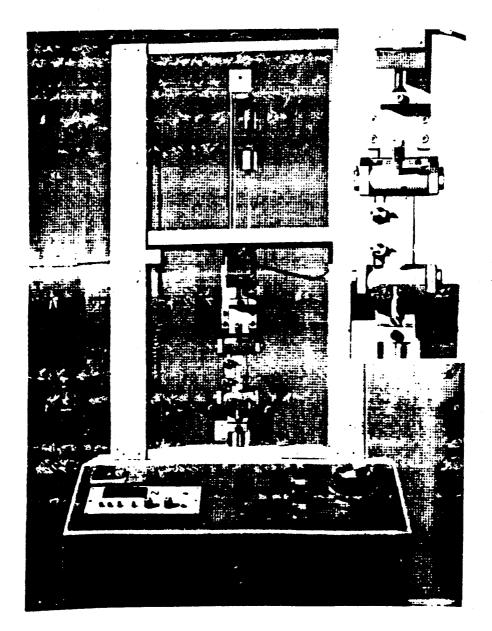
سپس نمونه ها از عرض بریده شده ، ماکرواچ روی آنها انجام می شود (مطالعه ساق جوش) . برای تعیین کیفیت مواد مصرفی لازم است آزمایشات خمش جانیی و کشش از فلز جوش(مطابق ضمیمه <u>۱۳</u>) انجام شود.

۲-۲-۴) روش انجام آزمایشها

۱-۴-۲-۳) آزمایش کششی با مقطع کاهش یافته
قبل از انجام آزمایش تمام اندازه های نمونه کنترل می شوند. سپس نمونه در فـک هـای دسـتگاه قـرار
گرفته و بار اعمال میشود. آزمایش تا حد پارگی نمونه ادامه می یابد. اگر حداکثر بار وارده را بر مسـاحت

دستو*ر*العمل جوشکا*ر*ی

شرکت کاوش همایش



f -

(

سطح مقطع نمونه تقسیم کنیم ، استحکام کششی بدست خواهـد آمـد. همچنیـن از روی تفـاوت طـول نمونه ، قبل و بعد از آزمایش (اندازه ثانویه با کنار هم قراردادن نمونه های شکسته اندازه گیری می شود) امکان محاسبه درصد ازدیاد طول وجود دارد.

آشنایی با تست و

شکل ۵- نمونه ای از دستگاه کشش .

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

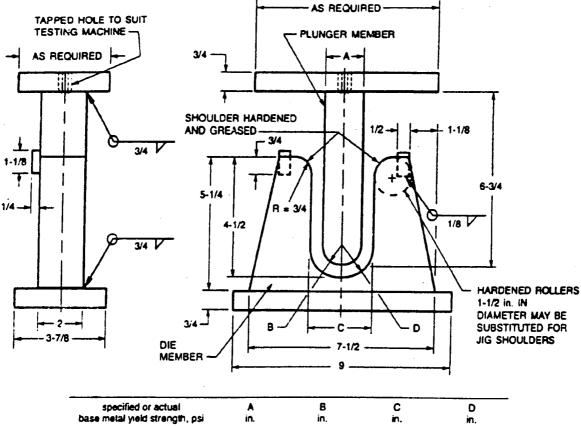
1.

آشنایی با تست و دستو*ر*العمل جوشکا*ر*ی

شرکت کاوش همایش

کروہ مہندسین بین العللی جوش ایران

۲-۴-۲-۳) آزمایش ماکرواچ


ابتدا مقطعی از نمونه بریده شده و توسط سنگ صاف میشود. سپس با سنباده زنبی متوالی با کاغذ سنباده های مختلف – از زبر به نرم – سطح نمونه صیقلی می شود. برای اچ کردن محلولهای مختلفی وجود دارد که در استاندارد ASME . Sec IX در بخش QW-470 ذکر شده است.

۳-۴-۲-۳) آزمایش خمش

E]

(____

نمونه ها در سه شکل ریشه ، سطحی و جانبی تهیه می شوند. نمونه ها مطابق شکل ع (QW-466) در نگهدارنده قرار گرفته و بوسیله یک سنبه سرگرد ، خمیده می شوند.

specified or actual base metal yield strength, psi	A in.	B in.	C in.	D in.
50 000 & under	1-1/2	3/4	2-3/8	1-3/16
over 50 000 to 90 000	2	_ 1	2-7/8	1.7/16
90 000 & over	2-1/2	1-1/4	3-3/8	1-11/16

Note: Plunger and interior die surfaces shall be machine-finished.

شکل ۶- مشخصات گیره *نگهدارندهٔ آزمایش خمش* .

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره لموزشی

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

کروہ مہندسین بین العللی جوش ایران

1

3-3) ارزیابی نتایج

نتايج قابل قبول آزمايشات

۱–۳–۳) آزمایش کشش (QW-150) Tension Test (QW-150) تهیه و نمونه های آزمایش کشش (با سطح مقطع کاهش یافته) برای ورق و لوله مطابق با 62.14-QW تهیه و مطابق Store ، نوع نمونه مشخص می گردد. نمونه های آزمایش کشش می تواند نمونه هایی با سطح مقطع کاهش یافته یا نمونه هایی با مقطع کامل باشد. لازم به ذکر است که فقط برای لوله هایی با قطر خارجی مساوی یا کمتر از ۳ اینچ نمونه هایی با مقطع کامل استفاده می شود. آزمایش تا گسیختگی نمونه تحت بار کششی ، ادامه می یابد. استحکام کششی از تقسیم حداکثر بار معیار پذیرش آزمایش فوق بصورت زیر است : ۱) استحکام کششی حاصله ، از حداقل استحکام کششی ته برای فلز پایه کمتر نباشد.

- ۲) دراتصال دو فلز پایه با استحکام های کششی مختلف ، استحکام کششی حاصله ، از حداقل استحکام کششی فلز پایهٔ ضعیف تر بیشتر باشد.
- ۳) در صورتیکه استحکام فلز جوش در دمای اتاق کمتر از فلز پایه باشد ، استحکام کششی حاصله ، از استحکام کششی فلز جوش کمتر نباشد.
- ۴) اگر نمونه آزمایش از فلز پایه ، در محلی خارج از خط جوش گسیخته شود ، آزمایش پذیرفته است. البته استحکام کششی نباید از 95 % حداقل استحکام کششی تعیین شده فلز پایه کمتر باشد.

Guided – Bend Test (QW-160) آزمایش خمش (Guided – Bend Test (

نمونه های آزمایش خمش با برش ورق یا لوله های نمونه جوشکاری شده بصورت نمونه هایی با مقاطع تقریباً مستطیل شکل ، بدست می آید. سطوح برش ، قسمت های جانبی نمونه را مشخص می کننـد. دو سطح دیگر سطوح ریشه و سطحی (گرده) نامیده می شود. پهنای جوش در سطح (گرده) بیشــتر اسـت. ضخامت نمونه و شعاع خمش در A66.1 روی-466.2 , QW-466.1 نشان داده شده است. نمونه های

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

شرکت کاوش همایش

میں ہے۔ کروہ مہندسین بین المللی جوش ایران

۳-۳) ارزیابی نتایج

نتايج قابل قبول آزمايشات

۲-۳-۳) آزمایش کشش (QW-150) Tension Test (QW-150) آزمایش کشش داد. QW-462.1 تهیه و نمونه های آزمایش کشش (با سطح مقطع کاهش یافته) برای ورق و لوله مطابق با د.462-QW تهیه و مطابق 151-QW ، نوع نمونه مشخص می گردد. نمونه های آزمایش کشش می تواند نمونه هایی با سطح مقطع کاهش یافته کاهش یافته می شد. کشش می تواند نمونه هایی با سطح مقطع کاهش یافته کاهش یافته می آزمایش کشش می تواند نمونه هایی با سطح مقطع کاهش یافته کاهش یافته کشش می تواند نمونه هایی با سطح مقطع کاهش یافته کشش می تواند نمونه هایی با سطح مقطع کاهش یافته کشش می تواند نمونه هایی با سطح مقطع کاهش یافته یا نمونه هایی با مقطع کامل باشد. لازم به ذکر است که فقط برای لوله هایی با قطر خارجی مساوی یا کمتر از ۳ اینچ نمونه هایی با مقطع کامل استفاده می شود.
آزمایش تا گسیختگی نمونه تحت بار کششی ، ادامه می یابد. استحکام کششی از تقسیم حداکثر بار اعمالی به سطح مقطع نمونه قبل از بارگذاری ، بدست می آید.

آشنایی با تست و دستو*ر*العمل جوشکا*ر*ی

- استحکام کششی حاصله ، از حداقل استحکام کششی تعیین شده برای فلز پایه کمتر نباشد.
- ۲) دراتصال دو فلز پایه با استحکام های کششی مختلف ، استحکام کششی حاصله ، از حداقل استحکام کششی فلز پایهٔ ضعیف تر بیشتر باشد.
- ۳) در صورتیکه استحکام فلز جوش در دمای اتاق کمتر از فلز پایه باشد ، استحکام کششی حاصله ، از استحکام کششی فلز جوش کمتر نباشد.
- ۴) اگر نمونه آزمایش از فلز پایه ، در محلی خارج از خط جوش گسیخته شود ، آزمایش پذیرفته است. البته استحکام کششی نباید از 95 % حداقل استحکام کششی تعیین شده فلز پایه کمتر باشد.

Guided – Bend Test (QW-160) آزمایش خمش (Gw-160) Guided – Bend Test

نمونه های آزمایش خمش با برش ورق یا لوله های نمونه جوشکاری شده بصورت نمونه هایی با مقاطع تقریباً مستطیل شکل ، بدست می آید. سطوح برش ، قسمت های جانبی نمونه را مشخص می کننـد. دو سطح دیگر سطوح ریشه و سطحی (گرده) نامیده می شود. پهنای جوش در سطح (گرده) بیشـتر است. ضخامت نمونه و شعاع خمش در QW-466.1 , QW-466.2 , QW-466.1 نشان داده شده است. نمونه های

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

ι٢

کروہ مهندسین بین المللی جوش ایران

آشنایی با تست و

دستو *ر*العمل جو شکاری

شرکت کاوش همایش

خمش با توجه به حالت محور جوش و محور نمونه نسبت به هم (عرضی یا طولی) و سطح خارجی (محدب) نمونهٔ خمش (ریشه ، سطحی(گرده) ، جانبی) به پنج دسته تقسیم مـی شـود. نـوع نمونـهٔ آزمایش مطابق با 16۱-QW تعیین می شود. نحوه انجام آزمایش باید مطابق با 162-QW باشـد. در ضمیمـه <u>۱۵</u> نمونـه از گیـرهٔ نگهدارنـده آزمایش خمش دیده می شود. () ناپیوستگی سطحی بزرگتر از 2.2 میلی متر در هر جهتی روی سطح خارجی (محدب) نمونه پس از حمش در منطقه جوش یا منطقه متاثر از حرارت (.H.A.Z) پذیرفته نیست. () برای روکش های جوشی مقاوم به خوردگی حداکثر ناپیوسـتگی سطحی مجـاز در روکـش در هـر جهت ۱.6 میلی متر و حداکثر ناپیوستگی سطحی مجاز در مرز اتصال 2.2 میلی متر است. () ناپیوستگی های سطحی که در گوشه های نمونه در حین آزمایش بوجود می آیند ، قـابل صرفنظـر مردن هستند مگر اینکه ناپیوستگی ها ناشی از ذوب ناقص ، آخالهای سرباه محبوس شده در جـوش یا دیگر عیوب داخلی باشند.

۳-۳-۳) آزمایش ضربه (QW-170) Impact Test

در صورت نیاز آزمایش ضربه با نمونه های ضربه با شیار (۷) مطابق با استاندارد SA-370 انجام میشود. معیار پذیرش نتایج آزمایش ضربه مطابق با استاندارد و بخش هایی است که انجام این آزمایش را ضروری دانسته اند.

Macroetch Test) آزمایش ماکرواج – Macroetch Test

برای تایید کیفیت نمونه ماکرواچ شده از طریق بازرسی چشمی نکات زیر را باید لحاظ کرد : ۱) در جوشهایی با اتصال شیاری و نفوذ جزئی ذوب باید تا ریشه اتصال انجام شده باشد. ۲) در جوشهای گلویی باید ساق جوش مؤثر وجود داشته باشد. ۳) حداقل پای جوش گلویی باید به اندازه مشخص شده جوش باشد.

5

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

۴) جوشهای شیاری با نفوذ جزئی و جوشهای گلویی باید حائز شرایط زیر باشند :
۱-۴) ترک در مقطع مشاهده نشود.
۲-۴) بین لایه های مختلف جوش ، فلز پایه و فلز جوش ذوب کافی صورت گرفته باشد.
۳-۴) شکل جوش مطابق طرح اتصال باشد.
۴-۳) شکل جوش مطابق طرح اتصال باشد.
۴-۴) سوختگی کناره جوش غیرمجاز در مقطع جوش دیده نشود (بیش از ۱ میلی متر).
۴-۴) سوختگی کناره جوش غیرمجاز در مقطع جوش دیده نشود (بیش از ۱ میلی متر).
۲-۴) برای تخلخل ۱ میلی متر یا بزرگتر ، جمع تخلخل بیش از ۶ میلی متر نباشد.
۶-۴) جمع سرباره بیش از ۴ میلی متر نباشد.
۶-۴) جمع سرباره بیش از ۴ میلی متر نباشد.
۷-۳-۳) آزمایش غیرمخرب (اولتر اسونیک – رادیوگرافی) NonDestructive Test (بذیر ش نیز مطابق با قسمت اوا - ۹).

و ۲۰۰۰ و یک و یک ۲۰۰۰ می بردازد. AWS, D1.1 ، به آزمایشات غیرمخرب می پردازد.

۶-۳-۳) بازرسی چشمی لوله ها و مقاطع توخالی Visual Inspection of Pipe لولهٔ جوشکاری شده در صورتی پذیرفته است که :

- جوش باید عاری از ترک باشد.
- ۲) سطح جوشها باید با دیوارهٔ خارجی لوله برخورد داشته باشد.
- ۳) حداکثر اندازه سوختگی کناره جوش مجاز در جوش 0.4 میلی متر است.
- ۴) ریشه جوش باید بازرسی شده و عاری از ترک باشد. ذوب ناقص و نفوذ غیر کافی نیز قابل صرفنظ ر کردن نیست.
 - ۵) حداکثر تعقر مجاز پاس ریشه ۱.6 میلی متر و حداکثر ذوب واقعی مجاز 3.2 میلی متر است.

۷-۳-۳) آزمایش مجدد در صورتیکه نتایج نمونه های تهیه شده در یک آزمایش جوابگوی کیفیت جوش نباشد ، باید دو سری دیگر از نمونه های آزمایش با همان مواد تهیه شده و نتایج هر دو سری پاسخگوی کیفیت جوش باشند.

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

کروہ مہندسین بین العللی جوش ایران

۳-۴) ثبت و تایید نتایج

پس از تعیین نتایج آزمایشات ، مشخصات فرایند تهیه نمونه و نتایج آزمایشهای تعییـن کیفیـت بـاید در فرم خاصی با عنوان گزارش کیفیت روش جوشکــاری (PQR) Procedure Qualification Record ثبـت شده وپس از مطالعه نتایج آزمایشات ، مورد تایید قرار گیرد.

در ضمیمه شماره ۲ نمونه آخرین فرم PQR پیشنهادی در استاندارد (ASME . Sec IX (QW-483) نشان داده شده است.

همانطور که در این ضمیمه دیده می شود ، فرم PQR دو صفحه ای است. در صفحه اول PQR ، اطلاعات و پارامترهای لازم برای انجام فرایند جوشکاری ذکر می شود که نحوه تنظیم آن همانند نحوه تنظیم فرم WPS است. به عبارت دیگر در صفحه اول اطلاعاتی نظیر : روش جوشکاری ، طرح اتصال ، فلز پایه ، فلسز پرکننده ، وضعیت جوشکاری ، پیشگرم و ذکر می گردد.

در صفحه دوم فرم PQR نتایج آزمایشات کشش ، خمش ، ضربه و در صورت نیاز دیگر آزمایشـات نظـیر سختی سنجی ، آنالیز شیمیایی و درج و تائید می گردد.

الف) اطلاعات حاصل از أزمایش کشش براساس کد QW-150 درج می گردد.

برای تفکیک نمونه های آزمایش ، نمونه ها شماره گذاری شده و در ستون اول جدول نوشته مــی شـود. پهنای نمونه های کشش تخت و یا قطر نمونه های کشش استوانه ای از روی نمونه ها اندازه گیری شـده و در ستون دوم جدول درج می گردد.

ضخامت نمونه های تخت که مطابق استاندارد تهیه شده اند ، به طور دقیق اندازه گیری و در ستون سوم جدول نوشته می شود.

براساس ضخامت و پهنای نمونه که در جدول ذکر شده ، مساحت سطح مقطع نمونه کشش در سـتون چهارم نـوشته می شود.

در ستون پنجم جدول ، حداکثر بــار وارده قبـل از شکسـت نمونـه ذکـر مـی گردد. درج واحـد بـار نــيز الزاميست.

در ستون ششم ، تنش کششی که از تقسیم حداکثر بار وارد بر مساحت سطح مقطع (اطلاعات مندرج در ستونهای چهارم و پنجم جدول) نوشته می شود. ذکر واحد تنش نیز ضروریست. در ستون هفتم به مشخصات نحوه شکست و محلی که شکست در نمونه رخ داده ، اشاره می شود.

Ç.

شرکت کاوش همایش

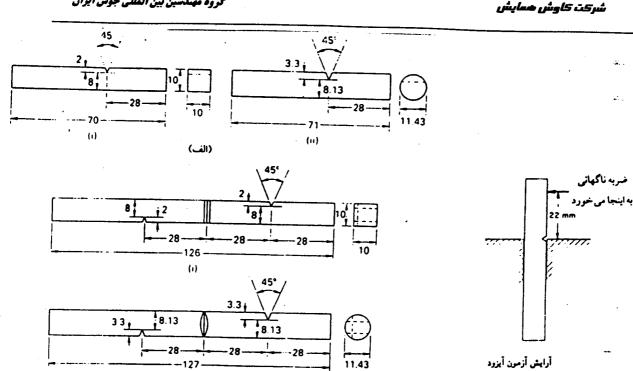
(

ب) اطلاعات حاصل از آزمایش خمش براساس کد QW-160 درج می گردد.
 در ستون اول ، نوع و شمارهٔ نمونه آزمایش خمش اعم از نوع ریشه ای ، جانبی یا سطحی (گرده ای) در
 این قسمت با توجه به کد QW-462 ذکر می شود.
 در ستون دوم ، نتایج حاصل از آزمایش خمش به یکی از اشکال زیر درج می گردد :
 ۸) Acceptable (۱
 ۲) Satisfactory
 ۲) No deffect (۳
 Good (۴

آشنایی با تست و

دستورالعمل جوشكارى

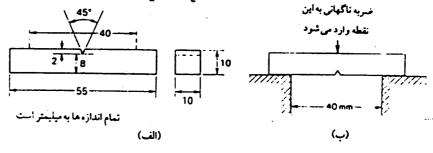
در دستگاههای قدیمی از وزنه های مختلفی برای آزمایش ضربه استفاده می شـد. (ASTM E208)،وزن نمونه ها در ستون هشتم جدول درج می گردد.



کروہ مہندسین *ہین المللی جوش ایران*

11

Ç



ابعاد .غوندهای آزمایش آنزود . والف) غوندهای تك شیاره ۷ شكل (i) مقطع

مهندس ليما مترمنديان

(ii) (ب)

مربع، (ii) مقطع دایره (ب) غونه های سه شیاره ۷ شکل(i) مقطع مربع، (ii) مقطع دایره.

(الف) اندازه های غونهٔ آزمایش شاریی برای فلزها (ب) نحوهٔ استقرار غونهٔ آزمایش . شکل ۷- مشخصات شیار ونمونه های ضربه .

د) اطلاعات حاصل از آزمایش جوش گلویی براساس کد I80-QW در این قسمت درج می گردد. نمونه های لازم مطابق با کد QW-462.4 تهیه می شود. در صورت رضایتبخش بودن – نتیجه آزمایش جوش گلویی در قسمت Result– Satisfactory علامت زده می شود. نتيجـــهٔ مشـاهـــدهٔ نمونـــهٔ ماکــــرواچ شـــده درمــورد نفــوذ جـــوش بـه فلــز پـايــه درقســمت Penetration into Parent Metal علامت زده شده و دیگر موارد مشاهده شده در قسمت Macro - result

درج میشود.

كروه مهندسين بين المللي جوش أيران/ ١٣٧٩ دوره لموزئني

٦ /

آشنایی با تست و دستورالعمل جوشکاری

شرکت کاوش همایش

 ه) در برخی موارد آزمایشهائی چون سختی سنجی در مناطق فلز جوش (W.M.) ، فلز پایه (B.M.) یا هم محلقه متاثر از حرارت (H.A.Z.) بدیم ازمایشهای غیرمخرب نیز باید انجام پذیرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (H.A.Z.) یا آزمایشهای غیرمخرب نیز باید انجام پذیرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (H.A.Z.) یا آزمایشهای غیرمخرب نیز باید انجام پذیرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (H.A.Z.) یا آزمایشهای غیرمخرب نیز باید انجام پذیرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (H.A.Z.) یا آزمایشهای غیرمخرب نیز باید انجام پذیرد.در قسمت نوع آزمایش منطقه متاثر از حرارت (H.A.Z.) یا آزمایش معرم و) نوشته می شود. آنالیز شیمیایی فلز جوش ممکن است جزء موارد مورد نیاز باشد. در این صورت ترکیب شیمیایی فلز جوش در قسمت آنالیز فلز رسوب داده شده شده از می گردد.

هر گونه اطلاعات و آزمایشات اضافه در قسمت دیگر موارد Other نوشته می شود.

و) اطلاعات تکمیلی :

•

(–

جوشهای سازه در صورتی مورد تائید است که جوشیکار آن همان جوشیکار PQR باشد، لذا ذکر نام جوشکار نمونهٔ آزمایش در این قسمت الزامیست. مواردی چون شماره پرسیلی و درجه کیفیت کار جوشکار نیز در PQR نوشته می شود. نام تنظیم کننده آزمایش و شماره گزارش آزمایشات نیز در PQR درج می گردد . تنظیم کننده PQR نهایتاً با ذکر تاریخ گزارش کیفیت روش جوشکاری را امضاء می کند.

۵-۳) نکات لازم در نوشتن PQR (محدودیت متغیـرها)

جهت کاهش هزینه و زمان ناشی از آزمایشات تعیین کیفیت لازمست تـا محـدوده ای بـرای متغیرهـای PQR در نظر گرفته شود. بدیهی است تغییر هر یک از متغیرها در خارج از محدودهٔ تعریف شده ، منجــر به نوشتن PQR , WPS جدید می شود.

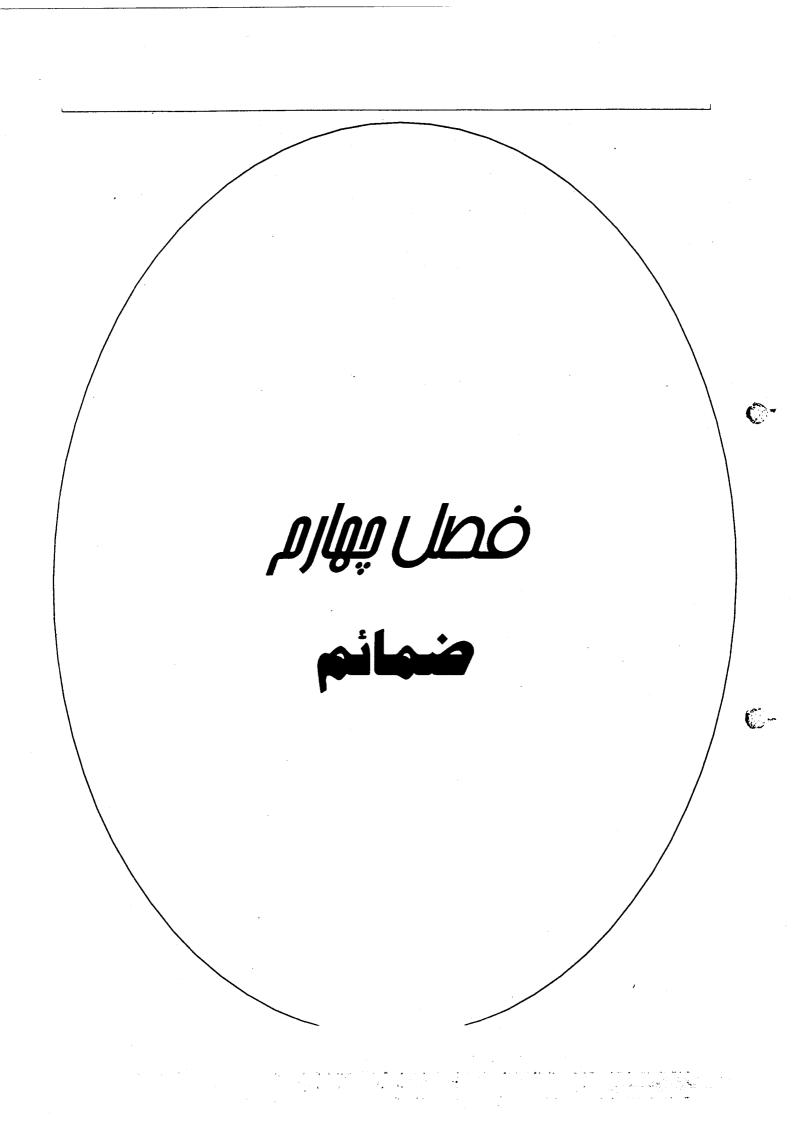
براساس 200-QW هر تولید کننده موظف به ارائه WPS جهت مشخص کردن روش جوشکاری (WPS) است و هر WPS باید به کمک آزمایشهای کنترل کیفی (PQR) ، تائیدیه کیفیت دریافت کند. پس هر WPS به یک PQR نیاز دارد. اما با توجه به نکات کد 252-WQ تا 262-WQ امکان تنظیم یک PQR برای تضمین کیفیت چندین WPS وجود دارد . در جداول کد 262-WQ تا 252-QW ، امکان تغییر (افزایش یا کاهش) هر یک از متغیرهای اساسی ، تکمیلی و غیراساسی فرایندهای مختلف جوشکاری مورد مقایسه قرار گرفته است. لازم به ذکر است در کد QW-200 تا 218-WP مطالبی که باید در نوشتن و استفاده از PQR مد نظر قرار داد ذکر شده است.

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

19

1

آشنایی با تست و دستورالعمل جوشکاری



شرکت کاوش همایش

*کروہ مہندسین بین المللی جوش ایرا*ن

همچنین برای کاهش تعداد PQR ها در استاندارد ASME , Sec IX در بخش QW-424 توصیه های مفیدی برای استفاده از یک PQR با فلز پایه و عدد مشخصهٔ P معین در مورد فلزات دیگر ارائه شده است. به عنوان مثال در صورتی که عدد مشخصهٔ P فلزات پایه مورد استفاده در PQR هر دو ۳ باشد ، این PQR را برای تایید WPS هایی که عدد مشخصهٔ P یکی از فلزات ۳ و عدد مشخصهٔ P فلز دیگر ۳ یا ۱ است ، میتوان استفاده کرد. البته دیگر پارامترهای ضروری نیز باید در PQR و RP مطابقت داشته باشد. (ضمیمه ۱۶)

دوره اموزشی

شرکت کاوش همایش

Q\V-482

NONMANDATORY APPENDIX B

QW-482 (Back) 0. -12 Rev. WPS No. POSTWELD HEAT TREATMENT (OW 407) CLASS - C.S. -6.3 Flat- Hor-Voy - Overhead POSITIONS (QW-405) 0, 4° (6) Temperature Range_ Position(s) of Groove. Time Range. Down 6505 Welding Progression. Up Position(s) of Fillet des - 1 101 MI 1 -مَعَنَّ مَعَنَّ الْمَعَنَّ الْمَعَنَّ الْمُعَنَّ الْمُعَنَّ الْمُعَنَّ الْمُعَنَّ الْمُعَنَّ الْمُعَنَّ الْمُعَ Gastesi (*** 5 GAS (QW-408) 1 5 PREHEAT (QW-406) ~~~~~ 3 Flow Rate Preheat Temp Min 25ఎ) Interpass Temp. Mex. 10-15 m 1.72 +1 + ... 97.2AV-310: Prehect Maintenance ا زود Shielding CEVA (Continuous or special heating where applicable should be recorded) Trailing Backing Charge State State 1 ELECTRICAL CHARACTERISTICS (DW 409) ASME LU (IVIng (IVIng) Polarity Current AC or DC_ Volts (Range), Amos (Range) (Amps and voits range should be recorded for each electrode size, position, and thickness, etc. This information may be listed in a tabular form similar to that shown below.) اللقرر الم 5 (J. 5) (1.541-5)10 Tungsten Electrode Size and Type (Pure Tunesen, 2% Thorieted, etc.) 14 - 1 - 1 Mode of Metal Transfer for GMAW_ (Spray arc, snoce surcuiting arc, etc.) 140 عد ۱۰ Electrode Wire feed speed range _ TECHNIQUE (QW-410) ---String or Weave Bead MIGUTA In 1161 Orifice or Gas Cup Size ____ Initial and Interpass Cleaning (Brushing, Grinding, etc.)_ Method of Back Gouging. 1 Oscillation _____ Contact Tube to Work Distance 15-0-MULA 5.0 i la a Multiple or Single Pass (per side)_ Multiple or Single Electrodes Bick 1 14 1 10 Travel Speed (Range) ____ ٠ ٩ 0 300 Peening پرس Cases يو با بر ما تونا Filler Metal Current Other pan se le.g., Remarks, Com-Travel ments, Hot Wire Voit Addition Technique, Type Amp Speed Weid Range Range Range Torch Angle, Etc.) Class Dia Polar. Laver(s) Process 4 2.4 DCFN GTAW 58705-C 80-160 7-13 510 (Oc Sb) E7012 2,3 SMAW 3.2, DCEP 110-150 10-20 18-22 (DCRPJ GTAW 4~h \mathcal{N} 1 4.0 150-200 11 SMAW 19-25:10-20 (Reg +) Etal3 m'ny 13-22 : 10-20 SMAW 10-15. 3.2 ACAP 1-3 Ś ir n =... 4. 0 14 50 - 100 19-25 10-20 べ ~ Back ALL الراجس y Ci. SMAW 4 .. مدر کند ? ملو ، مِنه ب ، ماند ی انتیم تعمر ، با هد و دهمه *-n*² 1.25 Bysy , ぇ 8-13 ر ار tokpsi 4 100 -160 ء Method كروه مهندسين بين المللي جوش أيران/ ١٣٧٩ مهتدس نيما هنرمنديان دوره آموزشی

حق جاب و تكثير . محفوظ و متعلق/به شركت كاوش همايش مي بانسد

ġ,

۱. .

1

	، با تست و مل جوشکا <i>ر</i> ی	•	R	
		دسورالعه		
،سین بین <i>المللی جوش ایران</i>	AN و ۲۶ فی فرنت محروه میند مینده عبد فور		ن کاوش همایش مرکز کارو این از مرکز کارو کارو کارو کارو کارو کارو کارو کارو	شرک
QW-482	1998 SI	ECTION IX	E C	W WAS
QW-482 8	SUGGESTED FORMAT FOR WE See QW-200.1, Section DX, ASN	LDING PROCEDURE	SPECIFICATIONS (WP	8)
		br:		······
Weiding Procedure Specificatio	Dete Dete		Supporting POR No.(s)	1- 1 1 1 1 1 1
Revision No. 2. 1. 2		- '	ازات- درجه. نسرته ج	
- V		Iype(s)	Automatic Manual Machine, e	r Semi-AutoJ
JORITS (QW-402)	in ((w) = +=; ch B. PU=1.	SMAW_ NIA	Details	
Joint Design	Contates B. PU-	-		
Backing (Yee)	(No) (No)		ULALA C. TAN	: chr
Backing Material (Type)	Faller to both backing and retainers.)		W	
🗆 Metal 🛛 Nonfusia	ng Metal		- de Fart	
	-			
1 -	gs, Weld Symbols or Written Descriptio		Part the	
should show the opperat array	ngement of the parts to be welded. When		Tre_	-
	and the details of weld groove may b		Gemporint.	Self land e
apecified.	•			in -ng s
(At the option of the Mgr., ske dusign, weld layers and beed se dures, for multiple process pro	stches may be attached to illustrate joir squence, e.g., for notch toughness parce pedures, etc.)	X ·	Comportent.	(PL,+, FE).
ducion, wold layers and beed se dures, for multiple process pro *BASE METALS (QW-403) P-No Group No.	aquencs, e.g., for notch toughness paper poedures, etc.)	pup No		(PL,+, p) .
dusign, weld layers and beed se dures, for multiple process pro *BASE METALS (OW-403) P-No Group No.	equence, e.g., for notch toughness parents of the second s	X		(PL,+,pp),
dusign, weld layers and based se dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR ^	equence, e.g., for notch toughness paramodelines, etc.) $p_{1} = \frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{1}{12}$ to P-No.	oup No		(PL , + , PE)
design, weld layers and based set dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grad OR	aquence, e.g., for notch tocyhnese parce poedures, etc.)	X		·····
design, weld layers and based set dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grad OR Chem. Analysis and Mech. Pr	aquence, e.g., for notch tocyhnese pace podures, etc.) p to P-No. p to P-No. de	oup No		(14,+,19)
design, weld layers and based se dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade OR Chem. Analysis and Mech. Pri to Chem, Analysis and Mech.	aquence, e.g., for notch tocyhnese pace podures, etc.) p to P-No. p to P-No. de			·····
design, weld layers and based set dures, for multiple process pro- *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pri to Chern. Analysis and Mech. Thickness Range: Base Metal: Groove	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.			·····
design, weld layers and based set dures, for multiple process pro- *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pri to Chern. Analysis and Mech. Thickness Range: Base Metal: Groove	Aquence, e.g., for notch toughness paper podures, etc.) p to P-No de Prop			·····
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern. Analysis and Mech. Pr to Chern. Analysis and Mech. Thickness Range: Base Metal:	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.		5 - 10 mm + Tat	·····
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Chem. Analysis and Mech. Pri to Chem. P	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.			
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern. A	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.	Pup No. Fillet	5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Chem. Analysis and Mech. Pri to Chem. P	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.		5- 10 mm FT Y	تش توقع الم
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pri to Chern. Analysis and Mech. Pr	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chem. Analysis and Mech. Pr to Chem. Analysis and Mech. Pr	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade OR Chem. Analysis and Mech. Pr to Chem. Analysis and M	Aquence, e.g., for notch toughness parts backures, etc.) b to P-No. de Prop ZP - 3 o mimp.		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern.	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No. OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern.	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No. OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern.	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No. OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chern. Analysis and Mech. Pr to Chern.	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	تش توقع الم
design, weld layers and based saddures, for multiple process pro *BASE METALS (OW-403) P-No. Group No. OR Specification type and grade to Specification type and grade to Specification type and grade to Chem. Analysis and Mech. Prito Chem. Analysis and Mech. Prito Chem. Analysis and Mech. Prito Chem. Analysis and Mech. *FILLER METALS (OW-404) Spec. No. (SFA) 5/20 F-No. Size of Filler Nietals Weid Metal Thickness Range: Groove Fillet Electrode-Flux (Class) Flux Trade Name Consumable Insert	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	
design, weld layers and based sa dures, for multiple process pro *BASE METALS (OW-403) P-No Group No. OR Specification type and grade to Specification type and grade to Specification type and grade to Specification type and grade to Chem. Analysis and Mech. Pr to Chem. Analysis and Mech. Pr	Aquence, e.g., for notch tocyhness pace codures, etc.)		5- 10 mm FT Y	TH

دوره لموزشی

كروه مهندسين بين المللي جوش ايران

 ${\bf v}$

ا شنایی با تست و

شرکت کاوش همایش

NONMANDATORY APPENDIX B

QW-483

		Or .	تباج شيخ	Toncilo Test (DIV-158)	POR No	
	Specimen No.	Width	Thickness	- Area	Ultimate Total Load Ib	Ultimate Unit Stress psi	Type of Feilure & Location
					+	<u> </u>	- 1-10 , <u> 10</u>
							72635
							, · · · ·
'تعا	in the works		5-52-2	Guided-Bend Tert	s (QW-160)		
		Type and F			}	Result	
					Accep+		
					NOT ACCE	+	
			0	í			
			م چرهرتقل	Toughness Tests	(QW-170)	V	
			·	T	internet Values		
	Specimen No.	Notch Location	Specimen Size	Test Temp. Ft. Ibi		Mils Drop	Weight Break (Y/N)
	Comments:						
				Fillet-Weld Test (QW-180)		
	Result Settefactory	:: Yee	No	ħ	Instration into Parent M	otal: Yes	
			سر حملہ دیدی ک	The Is male in			
'	Nacro — 7.00470	, مدر محمد <u>عمل کر ا</u>			انبور (ر نائر یا م 		
				Other Tes	ts		
,	voe of Test						
{ 0	eposit Analysis						· · · · · · · · · · · · · · · · · · ·
)ther			<u></u>			<u></u>
I					AL	~	in me Ne
	Veit r's Name				Clock NoLaborate	Sory Test No S	
٧	Ve certify that the	statements in th	is record are corre	ict and that the test	welds were prepared	, welded, and tested	in accordance with
1	equirements of Sec	tion IX of the AS	IME Code.				
[-			Manufa	cturer		
,	lata				8v		<u> </u>
					orm to the type and n		

کروہ مہندسین بین المللی جوش ایران

آشنایی با تست و

دستورالعمل جو شکاری

شرکت کاوش همایش

QW-483

К

1

1998 SECTION IX

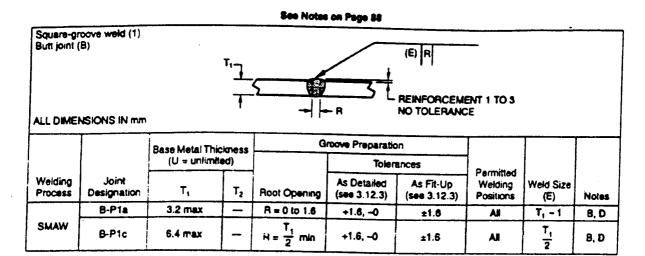
	al Conditions Used to Weld Test Coupon.
Company Name	
Procedure Qualification Record No	Date
WPS No.	
Welding Process(es)	<u></u>
Types (Manual: Automatic semi-nuto)	
JOINTS IQW-4021	
	×
	The second se
	ý.
	Groove Design of Test Coupen
(For combination qualifications, the de	croove Design or rest Couper posited weld metal thickness shall be recorded for each titler metal or process used (
BASE METALS (QW-403)	POSTWELD MEAT TREATMENT (QW-407)
Material Spec.	
Type or Grade	Time
P.No to P-No	
Thickness of Test Coupon	
Diameter of Test Coupon	
Dither _ Josephine Leven	
	GAS (QW-408)
······································	Percent Composition
	Percent Composition
	Percent Composition Gastes: Mixture Flow Rate
ILLER METALS (QW464)	Percent Composition Gasies:Mixture Flow Rate Shielding
FA Specification	Percent Composition Gastes: Mixture Fow Rate Shielding Trailing Backing Backing
FA Specification	Percent Composition Gasies Mixture Flow Rate Shielding Trailing
FA Specification	Percent Composition Gastes Mixture Fow Rate Shielding Trailing Backing ELECTRICAL CHARACTERIST CS. OW 409 Gurrent
IFA Specification	Percent Composition Gastes Mixture Fow Rate Shielding Trailing Backing ELECTRICAL CHARACTERISTICS OW 409 Current Polarity
IFA Specification	Percent Composition Gastes M. tiure Flow Rate Shielding
IFA Specification	Percent Composition Gastes M. tiure Flow Rate Shielding
IFA Specification	Percent Composition Gastes M. tiure Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
IFA Specification	Percent Composition Gastes M.xture Flow Rate Shielding
FA Specification	Percent Composition Gastes M.xture Flow Rate Shielding

ضميمه ۲

مهندس نيما هنزمنديان

گروه مهندسین بین الطلی جوش ایران/ ۱۳۷۹ مه جاب، نک . محمط ، منطق به شرکت کامذ هماند مر بانند

دستورالعمل جوشکا*ر*ی



کروہ مہندسین ہیں المللی جوش ایران

STD.AWS D1.1-ENGL 1998 MM 0784265 0508506 T49 MM

Prequalification of WPSs/59

C

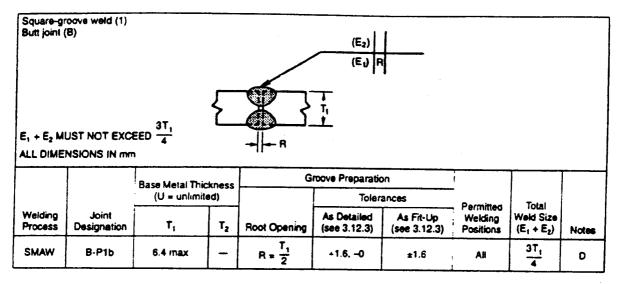


Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

ضمیمه ۳

باشد

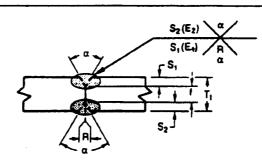
دوره اموزشی

V

آشنایی با تست و

دستو *ر*العمل جو شکاری

شرکت کاوش همایش


کروہ مہندسین ہیں العللی جوش ابران

STD.AWS D1.1-ENGL 1998 🗰 0784265 0508507 985 🎟

60/Prequalification of WPSs

Single-V-groove weld (2) Butt joint (B) Corner joint (C) ALL DIMENSIONS IN mm

	Joint Designation	Base Metal Thickness (U = unlimited)		G	roove Preparatio				
				Root Opening	Toler	ances	Permitted	1	
Walding Process		Τ,	T ₂	Root Face Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Welding Positions	Weld Size (E)	Notes
SMAW	BC-P2	6.4 min	υ	R = 0 f = 1 min α = 60°	0 +1.6 +U0 +10°, -0°	+3, -1.6 ±1/16 +10°, -5°	Al	s	B, D. E. N
GMAW FCAW	BC-P2-GF	6.4 min	υ	P = 0 f = 3 min α = 60°	0, +1.6 +U,-0 +10°, -0*	+3, -1.6 ±1/16 +10°, -5°	AL	S	A, B. E. N
SAW	BC-P2-S	11.1 min	υ	R = 0 f = 6 min $\alpha = 60^{\circ}$	±0 +U, -0 +10°, -0°	+1.6, -0 ±1.6 +10°, -5°	F	s	8, E, N

ALL DIMENSIONS IN mm

.

Double-V-groove weld (3) Butt joint (B)

		Base Metal Thickness (U = unlimited)		G	roove Preparatio				
				Root Opening	Toler	ances	Permitted	Total	
Welding Process	Joint Designation	т,	T ₂	Root Face Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Welding Positions	Weid Size $(E_1 + E_2)$	Notes
SMAW	B-P3	12.7 min	-	R = 0 f = 3 min α = 60°	+1.6, -0 +U, -0 +10°, -0°	+3, -1.6 ±1.6 +10°, -5°	Al	S ₁ + S ₂	D, E, Mp. N
GMAW FCAW	8-P3-GF	12.7 min	-	R = 0 f = 3 min α = 60*	+1.8, -0 +U, -0 +10°, -0°	+3, -1.6 ±1.8 +10°, -5°	AI	S ₁ + S ₂	A, E, Mp, N
SAW	8-P3-S	19.0 mir:	-	R = 0 f = 6 min α = 60°	±0 +U, -0 +10*, -0*	+1.6, -0 ±1.6 +10°, -5*	F	S. + Sz	E, Mp. N

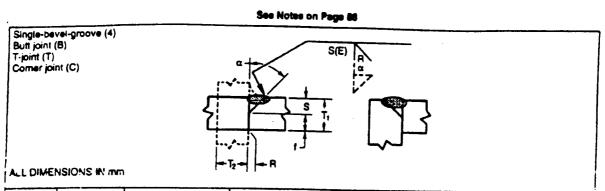
Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

مهندس نيما هترمنديان»

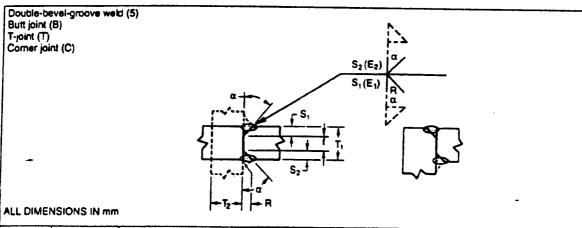
دوره أموزشي

كروه مهندسين بين العللي جوش ايران

ا شنایی با تست و دستو *ر*العمل جو شکاری


شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 - 0784265 0508508 811 -


Prequalification of WPSs/61

િ

C

Groove Preparation Base Metal Thickness (U = unāmited) Tolerances **Root Opening** Permitted Root Face As Fit-Up Welding Joint As Detailed Welding Weld Size T, T₂ Process Designation Groove Angle (see 3.12.3) (sce 3.12.3) Positions (E) Notes R = 0+1.6, -0 +3, -1.6 B, D, E, J, N, V SMAW BTC-P4 υ U f = 3 min unlimited ±1.6 AI S-3 +10", -0" $\alpha = 45^{\circ}$ +10°, -5° $\mathbf{R} = \mathbf{0}$ +1.8, -0 +3. -1.6 GMAW F, H S BTC-P4-GF A, B, E, 6.4 min U f = 3 min unlimited ±1.6 FCAW α = 45° +10", -0" V, OH S-3 J, N, V +10°, -5° R = 0**±**0 +1.6, -0 8, E, J, SAW TC-P4-S 11.1 min U f = 6 min+U. -0 ±1.6 F s N, V $\alpha = 60^{\circ}$ +10°, -0* +10", -5"

		Base Metal Thickness (U = unlimited)		G	Grcove Preparation				[
				Root Opening	Tolerances			Track	
Welding Process	Joint Designation	τ,	T ₂	Root Face Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Total Weld Size $(E_1 + E_2)$	Notes
SMAW	BTC-P5	8.0 min	υ	R = 0 f = 3 min a = 45°	+1.6, -0 unlimited + 10°, -0°	+3, -1.6 ±1.6 +10°, -5°	AI	S ₁ + S ₂ -6	D, E, J, Mp, N, V
GMAW FCAW	BTC-PS-GF	12.7 min	υ	R = 0 f = 3 min a = 45°	+1.6, -0 unlimited +10°, -0°	+3, -1.6 ±1.6 +10*, -5*	F, H V, OH	$S_1 + S_2$ $S_1 + S_2$ -6	A. E. J. Mp. N. V
SAW	TC-PS-S	19.0 min	U	R = 0 f = 6 min α = 60°	±0 +U, -0 +10°, -0°	+1.6, -0 ±1.6 +10*, -5*	F	S1 + S2	E. J. Mp, N,

Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

ضمیمه ۳	
گروه مهندسین بین البالی خوش ایران/ ۱۳۷۹ مهندس لیما هنرمندیان	دوره اموزشی
حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش مي باشد	<u>. 2000 (100 100 100 100 100 100 100 100 100</u>

2

آشنایی با تست و دستو *ر*العمل جو شکاری

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 ME 0784265 0508509 758 ME

62/Prequalification of WPSs

۹

ť.

ŧ,

See Notes on Page 88 Single-U-groove weld (6) Butt joint (B) Corner joint (C) S(E) R

ALL DIMENSIONS IN mm

]	Base Metal Thi	rknase	G	oove Preparatio	n				
		(U = unlimi		Root Opening	Tolerances					
			т,	T ₂	Root Face Groove Radius Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Weld Size (E)	Notes
SMAW	BC-P6	6.4 min	U	R = 0 f = 1 min r = 6 α = 45°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	Ali	S	8, D, E N	
GMAW FCAW	BC-P6-GF	6.4 min	U	R = 0 f = 3 min r = 6 α = 20*	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	All	s	A, 3, E, N	
SAW	BC-P6-S	11.1 min	υ	R = 0 f = 6 min f = 6 α = 20*	±0 +U, -0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	s	8. E. N	

 $S_2(E_2)$ S1(E1) S T₁ S.

ALL DIMENSIONS IN mm

Double-U-groove weld (7) Butt joint (8)

		8ase Metal Thickness (U = unlimited)		Groove Preparation					
	1			Root Opening	Tolerances				
Welding Joint Process Designation	Joint Designation	τ,	T ₂	Root Face Groove Radius Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Total Weld Size (E ₁ + E ₂)	Notes
SMAW	B-P7	12.7 min	-	R = 0 f = 3 min r = 6 a = 45°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	AN	S ₁ + S ₂	D, E, Mp, N
GUAW FCAW	B-P7-GF	12.7 min	-	R = 0 f = 3 min f = 6 α = 20°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	AH	S ₁ + S ₂	A, E. Mp, N
SAW	B-P7-S	19.0 min	-	R = 0 I = 6 min r = 6 a = 20°	±0 +U, -0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	S ₁ + S ₂	E, Mp, N

Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

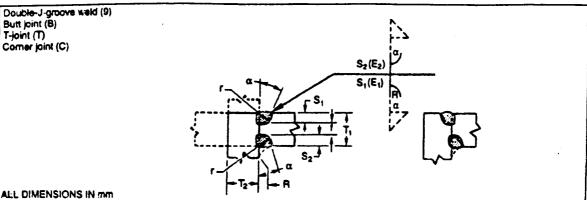
• •	· · · ·	÷			• • • •		-
	~~~		N			·	2002-00-00 - 00 - 00 - 00 - 00 - 00 - 0
هندس نيما هترمنديان		·····	لی جوش ایران ۱۳۳	A 100 100 100 100 100 100 100 100 100 10		·	224 P. 2020
			********	and Carl Carriers of			17.000 1 2 00
					200000000000000000000000000000000000000		99922300000
							*****
			والمرور كالمراجع كالمراجع والمراجع	le chine c			



کروہ مہندسین ہیں المللی جوش ایران

\-

آشنایی با تست و دستورالعمل جوشکاری




شرکت کاوش همایش

### STD.AWS D1.1-ENGL 1998 MM 0784265 0508511 306 MM

64/Prequalification of WPSs

See Notes on Page 88



		Base Meral Thi	Base Metal Thickness		roove Preparatio				
		(U = unlimited)		Root Opening					
Welding Process	Joint Designation	т,	T2	Root Face Groove Radius Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Total Weld Size $(E_1 + E_2)$	Notes
SMAW	BTC-P9*	12.7 min	υ	R = 0 f = 3 min r = 10 α = 45°	+1.6, -0 +U, -0 +8, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	AI	S ₁ + S ₂	D, E, J Mp. N V
GMAW FCAW	BTC-P9-GF**	6.4 min	υ	R = 0 f = 3 min r = 10 α = 30°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	Al	S1 + S2	A, J, Mp. N. V
SAW	C·P9-S*	19.0 min	υ	R = 0 I = 6 min r = 13 α = 45°	±0 +U, -0 +6, -0 + 10°, -0°	+1.6, -0 <b>±1.6</b> <b>±1.6</b> +10°, -5°	F	S1 + S2	A, E, J N, V
SAW	C-P9-S**	19.0 min	υ	R = 0 f = 6 min r = 13 α = 20°	±0 +U, -0 +6, -0 +10°, -0*	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	S, + S ₂	E, J, Mp, N, V
SAW	T-P9-S	19.0 min	U	R = 0 f = 6 min r = 13 $\alpha = 45^{\circ}$	±0 +U, -0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	S ₁ + S ₂	E. J. Mp. N

*Applies to inside corner joints.

**Applies to outside corner joints.

Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

ضمیمه ۳

دوره الموزشي

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

.

٢

C



11

1

آشنایی با تست و دستو *ر*العمل جو شکاری



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

## STD.AWS D1.1-ENGL 1998 MM 0784265 0508510 477 MM

• •

### Prequalification of WPSs/63

See Notes on Page 88

Butt joint T-joint (T) Corner joi					S(E) T	 			
		Base Metal Thi	cinees	G	roove Preparati	on		1	
		(U = unlimi		Root Opening	Toler	ances	1		
Weiding Process	Joint Designation	T ₁	T2	Root Face Groove Radius Groove Angle	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Weiding Positions	Weld Size (E)	Notes
SMAW	TC-P8*	6.4 min	υ	R = 0 f = 3 min r = 10 α = 45°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	AI	S	D, E, J N, V
SMAW	BC-P8"	6.4 min	U	R = 0 f = 3 mh r = 10 α = 30°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	Ali	S	D, E, J N, V
GMAW FCAW	TC-P8-GF*	6.4 min	U	R = 0 f = 3 min r = 10 α = 45°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	AH	s	A, E, J, N, V
GMAW FCAW	BC-P8-GF**	6.4 min	U	R = 0 f = 3 min r = 10 a = 30°	+1.6, -0 +U, -0 +6, -0 + 10°, -0°	+3, -1.6 ±1.6 ±1.6 +10°, -5°	All	S	A, E, J, N, V
SAW	TC-P8-S*	11.1 min	υ	R = 0 f = 6 min r = 13 α = 45°	±0 +U, -0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 +10°, -5°	F	S	E, J, N, V
SAW	C-P8-S**	11.1 min	U	$R = 0$ $l = 6 min$ $r = 13$ $\alpha = 20^{\circ}$	±0 +U0 +6, -0 +10°, -0°	+1.6, -0 ±1.6 ±1.6 ±1.6 +10°, -5°	F	s	E, J, N. V

*Applies to inside corner joints. **Applies to outside corner joints.

Figure 3.3 (Continued)-Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

دوره لموزشی 🔹 •



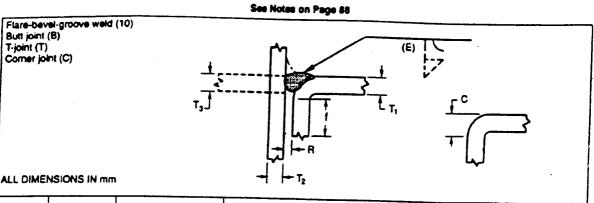
کروہ مہندسین بین المللی جوش ایران

1(

ا شنایی با تست و






شرکت کاوش همایش

# TD.AUS D1.1-ENGL 1998 M 0784265 0508512 242

Prequalification of WPSs/65

0

**(**)



		Base Metal Thickness (U = unlimited)			G	roove Preparati				
					Root Opening	Tolerances				
Welding Process	Joint Designation	τ ₁	T ₂	T ₃	Root Face Bend Radius*	As Detailed (see 3.12.3)	As Fit-Up (see 3.12.3)	Permitted Welding Positions	Weld Size (E)	Notes
SMAW	BTC-P10	4.8 min	υ	T ₁ min	R = 0 I = 5 min $C = \frac{3T_1}{2} min$	+1.6, -0 +U, -0 -0, +Not- Limited	+3, -1.6 +U, -1.6 -0, +Not- Limited	All	5/8T,	D, J, N, Z
GMAW FCAW	BTC-P10-GF	4.8 min	U	T ₁ min	R = 0 f = 5 min $C = \frac{3T_1}{2} min$	+1.6, -0 +U, -0 -0, +Not- Limited	+3, -1.6 +U, -1.6 -0, +Not- Limited	All	5⁄8T,	A, J, N, Z
SAW	T-P10-S	12.7 min	12.7 min	N/A	R = 0 f = 13 min $C = \frac{3T_1}{2} min$	±0 +U, -0 -0, +Not- Limited	+1.6, -0 +U, -1.6 -0, +Not- Limited	F	5/8T,	J, N, Z

*For cold formed (A500) rectangular tubes, C dimension is not limited. See the following:

Effective Weld Size of Flare-Bevel-Groove Welded Jointa. Tests have been performed on cold formed ASTM A500 material exhibiting a "c" dimension as small as T₁ with a nominal radius of 2t. As the radius increases, the "c" dimension also increases. The corner curvature may not be a quadrant of a circle tangent to the sides. The corner dimension, "c", may be less than the radius of the corner.

> Figure 3.3 (Continued)—Prequalified Partial Joint Penetration (PJP) Groove Welded Joint Details (see 3.12) (Dimensions in Millimeters)

> > ضمیمه ۳

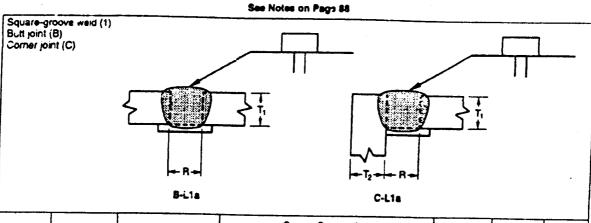
مهندس نيما هنرمنديان

دوره اموزشی

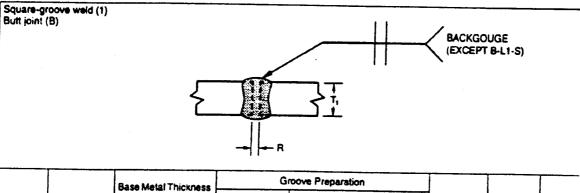


آشنایی با تست و دستورالعمل جوشگاری




*کروہ مہندسین ہین المللی جوش ایران* 

شرکت کاوش همایش


### STD.AWS D1.1-ENGL 1998 MM 0784265 0508513 189 MM

### 66/Prequalification of WPSs

مهتدس ليما هنرمنديان



Welding Joint Process Designation	ĺ	Base Metal Thickness	G	roove Preparatio	on				
	(U = unlimited)			Tolerances					
		т,	T ₂	Root Opening	As Detailed (see 3.13.1)	As Fit-Up (see 3.13.1)	Perraitted Welding Positions	Gas Shielding for FCAW	Notes
SMAW	8-L1a	1/4 max	-	R = T,	+1/16, -0	+1/4, -1/15	All		D, N
	C-L1a	1/4 max	υ	R = T,	+1/16, -0	+1/4, -1/16	All		D, N
FCAW GMAW	8-L1a-GF	3/8 max		R = T,	+1/16, -0	+1/4, -1/16	All	Not required	A, N



		Base Metal Thickness (U = unlimited)		Groove Preparation					
					Tolerances				
Welding Joint Process Designation	т,	T ₂	Root Opening	As Detailed (see 3.13.1)	As Fil-Up (see 3 13.1)	Permitted Weiding Positions	Gas Shielding for FCAW	Notes	
SMAW	8-L1b	1/4 max	-	$R = \frac{T_1}{2}$	+1/16, -0	+1/16, -1/8	AH	-	C, D, N
GMAW FCAW	B-L1b-GF	3/8 max	-	A = 0 to 1/8	+1/16, -0	+1/16, -1/8	Al	Not required	A, C, N
SAW	B-L1-S	3/8 max	-	A = 0	±0	+1/16, -0	F	_	N
SAW	B-L1a-S	5/8 max	-	R=0	±0	+1/16, -0	F		C. N

Figure 3.4—Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details (see 3.13)

کروه مهندسین بین المالی جوش ایران/ ۱۳۷۹

.....

1. -.

وحديثا والجاد الركام كالكار مراياته الم

. 9

دوره اموزشی

10

Ű

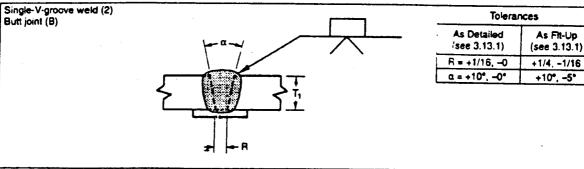


كروه مهندسين بين المللي جوش ايران

ا شنایی با تست و دستورالعمل جوشکاری

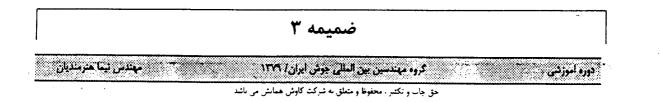


شرکت کاوش همایش


### STD.ANS DJ.J-ENGL 1998 🛲 0784265 0508514 015 🛲

Prequalification of WPSs/67

€


€

	1	Base Mutal Thi	cliness	G	roove Preparatic	n			!
		(U = unlimi			Toler	ances	i i Domittod		
Welding Process	Joint Designation	т,	Tz	Root Opening	As Detailed (see 3.13.1)	As Fit-Up (see 3.13.1)	Permitted Welding Positions	Gas Shielding for FCAW	Notes
SMAW	TC-L1b	1/4 max	υ	$R = \frac{T_1}{2}$	+1/16, -0	+1/16, -1/8	Ali	-	C, D, J
GMAW FCAW	TC-L1-GF	3/8 max	U	R = 0 to 1/8	+1/16, -0	+1/16, -1/8	AJI .	Not required	A, C, J
SAW	TC-L1-S	3/8 max	U	R = 0	±0	+1/16, -0	F		C, J



- Welding	Joint	Base Metai Th (U = unlim		Groove P	reparation	Permitted	Gas	
Process	Designation	<b>7</b> 1	T ₂	Root Opening	Groove Angle	— Welding Positions	Shielding for FCAW	Notes
			I L	R = 1/4	α = 45°	All		D. N
SMAW	8-U2a	U	<b>-</b> [	R = 3/8	α = 30°	F.V.OH	-	D. N
				R = 1/2	α = 20°	F. V. OH		D, N
GIAAW				R = 3/16	α = 30°	F. V. OH	Required	A, N
FCAW	B-U2a-GF	υ	I – [	R = 3/8	α = 30°	F.V.OH	Not reg.	A, N
				R = 1/4	α = 45°	F.V.OH	Not reg.	A, N
SAW	B-L2a-S	2 max		R = 1/4	α = 30°	F	-	N
SAW	B-U2-S	U	1-1	FI = 5/8	$\alpha = 2\tilde{U}^*$	F	<u> </u>	

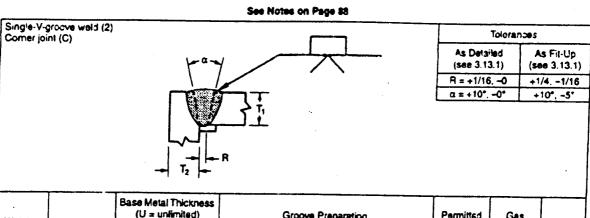
Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details (see 3.13)





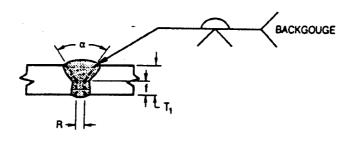





کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

# STD.AWS D1.1-ENGL 1998 🖼 0784265 0508515 T51 📟


### 68/Prequalification of WPSs

0/



Welding	Joint	(U ≠ unlim	ited)	Groove P	reparation	Permitted	Gas	
Process	Designation	T ₁	T ₂	Root Opening	Groove Angle	- Welding Positions	Shielding for FCAW	Noles
				R = 1/4	a = 45*	All I	_	D, N
SMAW	C-U2a	U	U [	R = 3/8	α = 30°	F. V. OH	_	D, N
				R = 1/2	α = 20°	F.V.OH		D, N
GMAW				A = 3/16	α = 30°	F.V. OH	Required	A
FCAW	C-U2a-GF	U	U [	R = 3/8	α = 30°	F, V, OH	Not reg.	A.N
				R = 1/4	α = 45°	F.V.OH	Not req.	A, N
SAW	C-L2a-S	2 max	U	R = 1/4	α = 30°	F	_	N
SAW	C-U2-S	U	U	A = 5/8	α = 20°	F	_	

Single-V-groove weld (2) Butt joint (8)



		Base Metal Thic	kness	G	roove Preparati	on			r
		(U = unlimit		Root Opening	Toler	ances	Permitted		
Welding Process	Joint Designation	т,	T ₂	Root Face Groove Angle	As Detailed (see 3.13.1)	As Fit-Up (see 3 13.1)	Welding Positions	Gas Shielding for FCAW	Notes
SMAW	B-J2	U	-	R = 0  to  1/8 f = 0  to  1/8 $\alpha = 60^{\circ}$	+1/16, -0 +1/16, -0 + 10°, -0°	+1/16, -1/8 Not limited +10*, -5*	All	-	C, D. N
GMAW FCAW	B-U2-GF	U	-	H = 0  to  1/8 f = 0 to 1/8 a = 60°	+1/16, -0 +1/16, -0 + 10°, -0°	+1/16, -1/8 Not limited +10°, -5°	AN .	Not required	A, C, N
		Over 1/2 to 1	-	R = 0 f = 1/4 max $\alpha = 60^{\circ}$					
SAW	B-L2c-S	Over 1 to 1-1/2	-	R = 0 l = 1/2 max α = 60°	$R = \pm 0$ f = +0, -f $\alpha = +10^{\circ}, -0^{\circ}$	+1/16, -0 ±1/16 +10°, -5°	F	-	C. N
		Over 1-1/2 to 2	-	R = 0 f = 5/8 max α = 60°					

Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details (see 3.13)

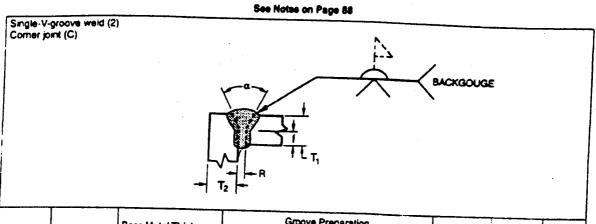
مهندين تيما هنرمنديان						
- A second second second second second second second second second second second second second second second second second second second second second second se Second second s second second sec						
		the second s				
				and the second		
	1 1 1 1 1 M 10 1					



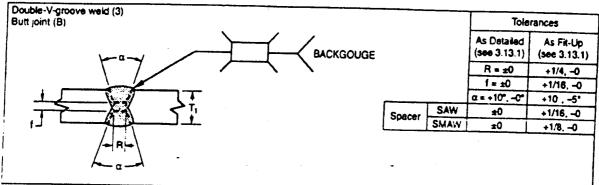




*كروه مهندسين بين المللي جوش ايران* 


شرکت کاوش همایش

# STD.AWS D1.1-ENGL 1998 M 0784265 0508516 998 M


Prequalification of WPSs/69

Ô

0



1		Base Metal TI	nickness	G	roove Preparati	n		· · · · · ·	1
1		(U = บา:‼ก		Root Opening	Toler	ances			[
Welding Process	Joint Designation	т,	T2	Root Face Groove Angle	As Detailed (see 3.13.1)	As Fil-Up (see 3.13.1)	Permitted Welding Positions	Gas Shielding for FCAW	Notes
SMAW	C-U2	U	U	R = 0 to 1/8 f = 0 to 1/8 $\alpha = 60^{\circ}$	+1/16,0 +1/16,0 + 10°,0°	+1/16, -1/8 Not limited +10*, -6*	Al	-	C, D. J. N
GMAW FCAW	C-U2-GF	U	U	R = 0  to  1/8 f = 0  to  1/8 $\alpha = 60^{\circ}$	+1/16, -0 +1/16, -0 + 10°, -0°	+1/16, -1/8 Not limited +10°, -5°	All	Not nequired	A, C, J. N
SAW	C-U2b-S	U	υ	R = 0 to 1/8 f = 1/4 max $\alpha = 60^{\circ}$	±0 +0, -1/4 +10°, -0°	+1/16, -0 ±1/16 +10°, -5°	F		C, J, N



	1	Base Metal Thi (U = unlimit		Groo	ve Preparation			1	 i
Welding Process	Joint Designation	Ť,	T ₂	Root Opening	Root Face	Groove Angle	Permitted Welding Positions	Gas Shielding for FCAW	Notes
		U		R = 1/4	f = 0 to 1/8	a = 45°	All		1 10085
SMAW	B-U3a	Spacer =	- [	R = 3/8	f = 0 to 1/8	α = 30°	F. V. OH	<u> </u>	C.D.
		1/8 × R		R = 1/2	f = 0 to 1/8	$\alpha = 20^{\circ}$	F. V. OH	<u> </u>	M, N
SAW	B-U3a-S	U Spacer = 1/4 × R	-	R = 5/8	f = 0 to 1/4	a = 20°	F	_	C, M, N

Figure 3.4 (Continued)--Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details (see 3.13)

ضميمه٣	
دوره اموزشی	
حقا جات محفاظ والمتبلغ به شركت كاوش همانش مر بالشد	



آشنایی با تست و دستو *ر*العمل جو شکاری

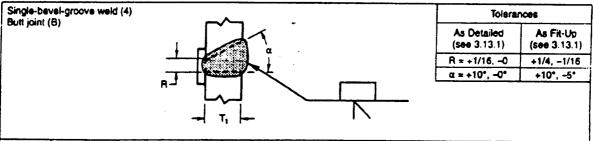


کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

. 650,

# STD.AWS D1.1-ENGL 1998 ## 0784265 0508517 824 ##


### 70/Prequalification of WPSs

مهتدس ليما هنرمنديان

|V|

1

				See Notes	on Page 88			Sider .	¥.a. 1
	-groove weld (3)	)		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	Fo	r B-U3c-S or	
Butt joint	(8)					BACKGOUGE		r,	S,
			- 0	/ /	$\overline{\ }$	DACKGOUGE	Over	to	+
		۲	2.	Y-9T.			2	2.1/2	1-3/E
							2-12	3	1-3/4
			8 7	· · · ·			3	3-5/8	2-1/8
		5	XX		-		3-5/8	4	2.3/8
		[	ΖA	' ) '	. 4		4	4-3/4	2-3/4
					- 1		4-3/4	5-1/2	3-1/4
				LS	·		5-1/2	6-1/4	3-3/4
	5.) 10		_β				S, -	> 5-1/4 or T 2/3 (T ₁ - 1/	
	e., ?;	Base Metal Th (U = unlim			roove Preparatio	ances	L'ANT		
Welding Process	Joint // Designation	т,	T ₂	Root Opening Root Face Groove Angle	As Detailed (see 3.13.1)	As Fit-Up (see 3.13.1)	Permitted Welding Positions	Gas Shielding for FCAW	Notes
SMAW	B-U3h	U		$R = 0 \text{ to } 1/8^{\circ}$ f = 0 to 1/8	+1/16, -0 +1/16, -0	+1/16, -1/8 Not limited	All	-	C. D. M. N
GMAW FCAW	B-U3-GF			$\alpha = \beta = 60^{\circ}$	+10", -0"	+10°, -5°	All .	Not required	A, C, M, N
SAW	B-U3c-S	U	_	H = 0 f = 1/4 min $\alpha = \beta = 60^{\circ}$	+1/18, -0 +1/4, -0 +10°, -0°	+1/16, -0 +1/4, -0 +10*, -5*	F	-	C. M. N
			1 1						



Welding	Joint	Base Metal Th (U = unlim		Groove P	reparation	Permitted	Gas	
Process	Designation	<b>T</b> ₁	T ₂	Root Opening	Groove Angle	- Welding Positions	Shielding for FCAW	Notes
SMAW	B-U4a			R = 1/4	a = 45°	Al	_	Br. D. N
SMATT	0-04a	U		A = 3/8	a = 30°	All	-	Br. D. N
C14414				A = 3/16	a = 30°	At	Required	A, Br, N
GMAW FCAW	C-U4a-GF	U	I – Г	R = 1/4	a = 45°	All	Not req.	A, Br, N
			ΙΓ	R = 3/8	a = 30°	F	Not reg.	A, Br, N
SAW	8-U4a-S	U		R = 3/8	a = 30°	-		
341	D-048-3	U		R = 1/4	a = 45°	- F	-	Br, N

Figure 3.4 (Continued)—Prequalified Complete Joint Penetration (CJP) Groove Welded Joint Details (see 3.13)

دوره أموزشي



آشنایی با تست و دستورالعمل جوشکا*ر*ی



شرکت کاوش همایش

ł

Ę

Ċ

Cast

f

كروه مهندسين بين المللي جوش ايران

QW/QB-422

1998 SECTION IX

			Minimum		Wel	Welding		Bra	Brazing		
Spec. No.	Type or Grade	UNS	Specified	٩.	Group	ά	Group	ط	Ϋ́	tenimoN	
			I CUSIIC, KSI	o N	No.	No.	No.	No.	No.	Composition	Freduct
	F3V	K31830	85	50				1			
	F22V	K31835	85	50	-	•	•	102	:	3Cr-1Mo-V-Ti-B	Forgings
	(F5	K41545	16. 20 Jus 70	ЯŶ,	• -	:	:	:	:	2.25Cr-1Mo-V	Foreines
	F5a	K42544	06 - 108			:	:	102	÷	5Cr-0.5Mo	Foreines
	F9				<b>-</b> ,	:	:	102	:	5Cr-0.5Mo	Forelase
SA-182	F91	Kalskn	6	8	I	:	:	102	:	9Cr-1Mo	
			62	58	-	:	:	102		9Cr-1Mo-V	r orgings
SA-182	F6a. Cl. 1	ופוופא	;								r orgings
	f ha Cl >		2 3	٥	-	:	•	102		13Cr	·
	EXM-19	161147	85	\$	e		:	102		130-	r orgings
		016020	100	8	Ē			100	•		For gings
		521904	66	8	~			201	•	UMC-INCT-JOS	Forgings
	r 304	S30400	70	8	l	•		104	:	ZICT-6Ni-9Mn	Forgings
				1	•	:	:	102	:	18Cr-8NI	Forgings > 5 in
	F304	S30400	75	a	•						
SA-182 F	F304L	SADADA		•	-	:	:	102	:	18Cr-8NI	Fordage
SA-182 F	F304L	STORUS		20 (	I	:	•	102	:	18Cr-8NI	
	FJOAH		2 :	æ	7	:		102	•	ACT-BNI	nt c < souisor .
	FROM	6040CC	02	8	I	:	•	102			
		020404	75	8	-	•		201			Forgings > 5 in.
		S30451	80	8	1			707	:	18Cr-BNI	Forgings
	L 304LN	S30453	70	8			•	201	:	18Cr-8NI-N	Forgings
	F 304LN	S30453	75	60	-		•	102	:	18Cr-8Ni-N	Forgings > 5 in.
	F46	S30600	78	• •	• -	•	:	102	:	18Cr-8NI-N	
SA-182 F	F45	\$30815	87	; a	- ,	•	:	102	:	17Cr-14NI-4Si	Foreinos
			5	0	7	:	•	102	:	21Cr-11NI-N	Fordone
	F310	S31000	70	đ	¢						
	F310	S31000	2 <b>4</b>		N (	:	:	102	:	25Cr-20NI	Fordare v e I-
	F50	531200		0	~	:	:	102	:	25Cr-20NI	.nic < symptom
	F44	531254	2	101	-	:	•	102	•	25Cr-6NI-MoN	ruryings
SA-182 F	F316	Salkon	F	<b></b>	4	:	•	102		20Cr-1ANI AMO	r orgings
			2	Ð	-	:	:	102			
SA-182 F	F316	007155	;								rorgings > 5 ln.
SA-182 F	F316L	000100	C :	æ	1	:		102		166	
	Falkt	00100	6	6	-	:	:	102		0W2-W2T-201	
	FILAH	500100	2	8		•	•	102		- 440 1142 - 2001	rorgings > 5 in.
	E 21 4 10	600166	20	8	1			501	•	TOCL-TENI-EMO	Forgings
	1010	S31609	75	3	-		•	707	:	10Cr-12Ni-2Ma	Forgings > 5 In.
					•	•	•	102	:	16Cr-12Ni-2Mo	
	FJI6N	<b>S31651</b>	80	π							
	F316LN	S31653	20	; e	- ,	:	:	102	:	16Cr-12NI-2M0-N	Foralase
	FJI6LN	S31653	75			:	:	102	:	16Cr-12Ni-2Mo-N	1
SA-182 F	F317	531700		5 6	-	:	:	102	:	16Cr-12Ni-2Mo-N	Foreless



QW/QB-422 FE&ROUS P-NUMBERS AND S-NIIMBEI

P.N.O.

ضمیمه ۴



Ę

QW/QB-422 FERROUS P-NUMBERS AND S-NUMBERS (CONT'D) Grouping of Base Metals for Qualification

			Minimum								
Spec. No.	Type or Grade	UNS No.	Specified Tensile, ksl	- No.	Group No.	ς, δ	Group No.	Ч, N	S- No.	Nominal Composition	Product Form
SA-182	F317	S31700	75	0	-	:	•	102	:	18Cr-13Ni-3Mo	Forgings
SA-182	F317L	S31703	65	8	T			201		18/4-13ML-2MA	Entertor of E
SA-182	F317L	S31703	02	- 33				501			rorgings > 5 in.
SA-182	F51	SALADA	8	not	• -	•	•	201	•		r orgings
SA.182	5321	001063	2 5		- ,	:	:	201	:	22Cr-5NI-3Mo-N	Forgings
	1201	001266	2	¢	-	:	:	102	:	18Cr-10NI-TI	Forgings > 5 in.
281-VC	F 321	532100	75	æ	l	:	÷	102	:	18Cr-10NI-TI	Forgings
SA-182	FJ21H	S32109	70	đ	-					100-1001 T	
SA-182	FIJIH	COLCES		<b>)</b> (	۹,	:	•	701	:	TOCL-TONI-II	Forgings > 5 in.
SA-182	FAS	1913CC		D	-		:	102	•	18Cr-10NI-TI	Forgings
1	-			:		НОТ	1	:	102	25Cr-8Ni-3Mo-W-	Forgings
SA.182	FIO	CARINO	Ca	c	¢						
CALLS	5247	001755	9	0	7	:	: :	102	:	20NI-BCr	Forgings
			2	æ	7	:	•	102	:	18Cr-10NI-Cb	Forgings > 5 in.
701-00		234700	75	æ _.	-	:	:	102	:	18Cr-10NICb	Forgings
SA-182	F347H	534709	02	a	. <b>.</b>						
SA-182	F 347 H	C34700	2			:	:	102	:	TRCL-TONI-CD	Forgings > 5 in.
Cal.A2	5340	401FCC	2 ;	o I	-	:	:	102	:	18C:10NICb	Forgings
101-07		0.094600	2	80	ľ	:	:	102	:	18Cr-10Ni-Cb	Forgings > 5 in.
701-	1546	234800	75	8	1	:	:	102	:	18Cr-10N-Cb	Forgings
701-00	L JAGH	234803	70	30	l	:	:	102	:	18Cr-10NI-Cb	Forainas > 5 in
5A-182	F348H	S34809	75	8	T	•	•	102	:	18Cr-10NI-Cb	Forgings
SA-182	F6b	S41026	110	9	~			201		130- 0 EM.	
SA-182	F6NM	S41500	115	-	• •2		•		:		r orgings
SA-182	F429	S42900	¥0	4	• •		•	101	:		r orgings
SA-182	FAID	COLERS	3 3			:	:	201	:	15Cr	Forgings
Callas	EVAN 2306		2		~	:	:	102	:	17Cr	Forgings
		170110	2	101	-	:	:	102	:	27Cr-1Mo	Forgings
A 182	F6a, CI. 3	S41000	110	:	:	\$	~		201	110-	Compace
A 182	F6a, Cl. 4	S41000	130		•	•	. ന		201	13C+5Mo	Forejaar
											65115 JO J
5A-192	•	K01201	47	-	l	:	:	101	:	C-SI	Smls. tube
SA-199	111	K11597	60	4	_			201		1 JEC. 0 EM. CI	
SA-199	122	K21590	¥0	~	-		•	301			omis. tube
SA.199	T	121500	3			:	:	102	:	2.25Cr-1Mo	Smls. tube
24-100		ADCTCN	00	A C	1	:	:	102	:	2.25Cr-0.5Mo-0.75SI	Smls. tube
1001 V 3	121	CHEICN	09	54	-	:	•	102	:	3Cr-1 Mo	Smls. tube
141-VC	<u> </u>	K41545	60	58	-	:	:	102	:	5Cr-0.5Mo	Stuts to e

-----

کروہ مہندسین ہیں المللی جوش ایران



QW/QE-422

دوره اموزشی گروه مهندسین بین الطلی خوش ایران/ ۱۳۷۹

حة حاب و تكت ، محفوظ و متعلة به شاكت كاوش همايش من باشد



شرکت کاوش همایش



دستو *ر*العمل جو شکار ی



شرکت کاوش همایش

ŧ

C

(

0

Ł

كروه مهندسين بين العللي جوش ايران

# QW/QB-422

1998 SECTION IX

Spec. No. SA-199 SA-202			Minimum		We	Welding		Brazing	ing i		
199 202	Type or Grade	UNS No.	Specified Tensile, ksi	P. No.	Group No.	γŞ	Group No.		ς. Β.	Nominal Composition	Product
202	191	•	85	58	~	:		102	:	9Cr-1Mo-V	Smis tube
	•	K11742	4 F.	•	-						
SA-202	: 60	K12542	85	4 4		:	:	101	:	0.5Cr-1.25Mn-SI	Plate
			;	•	-	:		101	:	0.5Cr-1.25Mn-Si	Plate
SA-203	٩	K21703	65	٩٩	l			וטו		2 6 MI	
SA-203	8	K22103	70	4 A	I				•		Plate
SA-203	٥	K31718	65	98	- 1		•		:	1NC.2	Plate
SA-203	ш	K32018	70	98		•		101	:	INC.C	Plate
SA-203	Ŀ		75	0,00	4 -	:	:	101	:	3.5NI	Plate
SA-203	Ľ	•		0 C	- ,	:	:	101	:	3.5NI	Plate > 2 in.
		•	00	90		:	:	101	:	3.5NI	Plate, 2 in. & under
SA-204	۷	K11820	59		-						
SA-204	8	K12020	6 5	<b>,</b> ,		:	:	101	÷	C-0.5Mo	Plate
SA-204	C	K12220		<b>^</b> (	~	:	:	101	:	C-0.5Mo	Plate
	,	A3C31V	C	~	7	÷	:	101	:	C-0.5Mo	Piate
SA-209	TIb	K11422	53		-						
SA-209	11	K11522	5		• -	:	:	101	:	0.05M0	Sinls. tube
SA-209	Tla	K12023	9			:	:	101	:	C-0.5Mo	Smls. ube
			2	n	-	:	÷	101	÷	C-0.5Mo	Srnts. tube
SA-210	A-1	K02707	60	-	-					i	
SA-210	J	K03501	70			•	•	101	:	C-SI	Smls. tube
			2	-	7	:	•	101	:	C-Mn-Si	Smls. tube
A 211	A570A		45			-	-			¢	
A 211	A570 Gr30	K02502	49				• •	•		، د	V/elded pipe
A 211	A570B	:	49			• ~	4 <b>,</b>	:	101		Welded pipe
A 211	A570 Gr33	K02502	52		•	• -	• •	:	101	) د	Welded pipe
A 211	A570C		52		•	• •	<b>→</b> ,	•	101		Weided pipe
211	A570D		i i		•			•	101	U	Welded pipe
			1		•	-	-	:	101	v	Welded pipe
5A-213	12	K11547	60	•	1			101			
SA-213	T12	K11562	09	4	I				:		Smis. tube
SA-213	III	K11597	60	4		•	•	201	:	ILL-U.JMO	Sinh. tube
SA-213	T17	K12047	40	001		:	:	102	:	1.25Cr-0.5Mo-Si	Smis jube
SA-213	122	Kalsan	204			:	:	102	:	1Cr-V	Smls. tube
SA-213	1.21	M31640	2	AC -	-	:	•	102	•	2.25Cr-1Mo	Smls, tube
SA-DIR	The		8	Ś	-	•	:	102	:	3Cr-1Mo	Smle tube
		C67164	60	56	1	•	•	102	:	5Cr-0.5Mo-TI	Sale tube
2	<u>-</u>	C41545	60	58	-	:	:	102	:	5Cr-0.5Mo	Smis tube
510-02	Teh										2001 - 51110

ضمیمه ۴

**(** ·

مهندس ليعا هنرمنديان

...

Spec.         Type or         UNS         Specified in the intervention         P.         S.         Mential Mential         Product         Product           Ax-111         T1				Minim		Vel	Welding		Bra	Brazing		
13         Kal150         60         59         1          102          667-106         Sink, tube           173         733          85         2          102          667-106         Sink, tube           179         700         20000         9         9         1          102          667-106         Sink, tube           7800         70         9         1          102          102          506-106         Sink, tube           7804.19         50040         75         8         1          102          102          506-106         Sink, tube           179041         50040         75         8         1          102          106-611         Sink, tube           730015         50043         75         8         1          102          106-611         Sink, tube           730015         50043         75         8         1          102          106-7101         Sink, tube           730015         50043<	pec. No.	Type or Grade	UNS No.	Specified Tensile, ksi	é Š	Group No.	Ϋ́ς	Group No.	٩Å	Ś	Nominal Composition	Product
Tyle         Tyle <th< td=""><td>-213</td><td>19</td><td>K81590</td><td></td><td>A A</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	-213	19	K81590		A A	-						
TP201         S20100         95         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th< td=""><td>-213</td><td>161</td><td></td><td>85</td><td>200</td><td>• ~</td><td>: :</td><td>::</td><td>102</td><td>: :</td><td>9Cr-1Mo-V</td><td>Smis. tube Smis. tube</td></th<>	-213	161		85	200	• ~	: :	::	102	: :	9Cr-1Mo-V	Smis. tube Smis. tube
TF201         520100         95         8         1         102         172.01         52010         95         8         1         102         112.01         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010         55010 <t< td=""><td></td><td>t</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		t										
Trade         Saccord         00         8         3          102          200-301         Sink, tube           TP3041         S30403         73         8         1          102          102          102          102          103         Sink, tube           TP3041         S30403         73         8         1          102          102          102          103         Sink, tube           TP3041         S30453         73         8         1          102          102          103         Sink, tube           TP3041         S30453         73         8         1          102          205-13N1-5Mn         Sink, tube           TP3041N         S30453         73         8         1          102          205-20N1         Sink, tube           TP3041N         S30453         73         8         2          102          205-23N1         Sink, tube           TP3041N         S30430         73         2 <td< td=""><td>-213</td><td>10241</td><td>520100</td><td>95</td><td>80</td><td>ē</td><td>÷</td><td>•</td><td>102</td><td>:</td><td>17Cr-4Ni-6Mn</td><td>Smls. tube</td></td<>	-213	10241	520100	95	80	ē	÷	•	102	:	17Cr-4Ni-6Mn	Smls. tube
XM-19         S20710         100         100         102 $226-13N-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-13N-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-13N-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-12N-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-22N-3M-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-22N-2M-5M-5Mn$ Smk, tube           TP3041         330401         75         8         1 $226-22N-2M-5M-5Mn$ Smk, tube           TP3041         530413         75         8         2 $226-22NH-2M-5M-5Mn$ Smk, tube           TP3041         530401         75         8 $226-22NH-2M-5M-5Mn$ Smk, tube           TP3041         530401         75 $226-22NH-2M-5M-5M-5M-5M-5M-5M-5M-5M-5M-5M-5M-5M-5M$	-213	1 202	520200	90	80	e	:	:	102	:	18Cr-5Kl-9Mn	Smis. tube
T9344         S30400         75         8         1          102          106 - 6NI         Smit, tube           T93041         S30403         75         8         1          102          106 - 6NI         Smit, tube           T93041         S30403         75         8         1          102          106 - 6NI         Smit, tube           T93041         S30451         60         8         1          102          106 - 6NI         Smit, tube           S30451         50         8         1          102          106 - 6NI         Smit, tube           S30451         50         8         1          102          236 - 12NI         Smit, tube           S30405         S3090         75         8         2          102         236 - 12NI         Smit, tube           T93050         53100         75         8         2          102         236 - 12NI         Smit, tube           T93050         53100         75         8         2          102         236 - 12NI	-213	41-MX	S20910	100	80	ē	:	•	102	:	22Cr-13NI-5Mn	Smis. tube
TP304L         S30403         70         8         1         1         102         102         102         102         102         102         102         102         103         5mk ube 5mk ube 5mk ube           T9304H         530403         75         8         1          102          102          106          5mk ube 5mk ube           73015         530403         75         8         1          102          102          102          104         Smk ube           53015         53040         75         8         2          102          2367-12M         Smk ube         Smk ube           79091         53090         75         8         2          102          2367-12M         Smk ube           79302         530440         75         8         2          102          2367-12M         Smk ube           793040         53040         75         8         2          102          2367-12M         Smk ube           793040         531040         75 </td <td>-213</td> <td>TP304</td> <td>S30400</td> <td>75</td> <td>8</td> <td>-</td> <td>:</td> <td>:</td> <td>102</td> <td></td> <td>18Cr-BNI</td> <td>Smls tube</td>	-213	TP304	S30400	75	8	-	:	:	102		18Cr-BNI	Smls tube
T904H         50040         75         8         1         102         102         106-6HLN         Smit, tube           7904LN         530451         75         8         1         102         106-6HLN         Smit, tube           7904LN         530451         75         8         1         102         106-6HLN         Smit, tube           5793LN         530451         75         8         1         102         106-6HLN         Smit, tube           5793LN         530451         75         8         1         102         206-12NL         Smit, tube           59041         530940         75         8         2         102         206-12NL         Smit, tube           1790405         5310941         75         8         2         102         206-12NL         Smit, tube           1790405         5310941         75         8         2         102         206-12NL         Smit, tube           1791041         5310941         75         8         2         102         206-12NL         Smit, tube           1791041         5310941         75         8         2         102         2         2         2         2 </td <td>-213</td> <td>TP304L</td> <td>S30403</td> <td>70</td> <td>8</td> <td>,</td> <td></td> <td></td> <td>102</td> <td></td> <td>TACTAN</td> <td>Sents the</td>	-213	TP304L	S30403	70	8	,			102		TACTAN	Sents the
TP304M         S30451         B0         B         1         102         102         102         101         Smit ube Smit ube Smit ube Smit ube Smit ube         Smit ube Smit ube Smit ube         Smit ube Smit ube Smit ube         Smit ube Smit ube Smit ube         Smit ube <th< td=""><td>-213</td><td>TP304H</td><td>S30409</td><td>75</td><td>80</td><td>1</td><td>:</td><td>:</td><td>102</td><td></td><td>18Cr-BNI</td><td>Smis. tube</td></th<>	-213	TP304H	S30409	75	80	1	:	:	102		18Cr-BNI	Smis. tube
TPJOLIN         STORT         OP         I         Description         Solid         Solid <t< td=""><td>F10-</td><td>TDAAN</td><td>130463</td><td>Ċ</td><td></td><td>ſ</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	F10-	TDAAN	130463	Ċ		ſ						
F7JOLUN         SJOHJ         75         8         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <t< td=""><td></td><td></td><td>TCHOCC</td><td>Da 1</td><td>Ð</td><td>I</td><td>:</td><td>:</td><td>102</td><td>:</td><td>18Cr-8NI-N</td><td>Smls. tube</td></t<>			TCHOCC	Da 1	Ð	I	:	:	102	:	18Cr-8NI-N	Smls. tube
\$50013         \$50013         \$7         8         2          102          216-11NI-N         Smill ube Smill ube Smill ube           TP3095         \$30940         75         8         2          102          236-12NI         Smill ube           TP3096         \$30940         75         8         2          102          236-12NI         Smill ube           TP30940         \$30940         75         8         2          102          236-12NI         Smill ube           TP30105         \$31009         75         8         2          102          236-12NI         Smill ube           TP30104         \$31009         75         8         2          102          236-12NI         Smill ube           TP30104         \$31009         75         8         2          102          236-12NI         Smill ube           TP31040         \$31009         75         8         2          102          236-12NI         Smill ube           TP310401         \$31009         75 <t< td=""><td>-213</td><td>I P304LN</td><td>S30453</td><td>75</td><td>8</td><td>I</td><td>:</td><td>:</td><td>102</td><td>:</td><td>18Cr-8NI-N</td><td>Smls. tube</td></t<>	-213	I P304LN	S30453	75	8	I	:	:	102	:	18Cr-8NI-N	Smls. tube
TP3095         530908         75         8         2         102         236-12NI         5mk tube           TP309H         530940         75         8         2         102         236-12NI         5mk tube           TP309H         530940         75         8         2         102         236-12NI-Cb         5mk tube           TP309H         530940         75         8         2         102         236-12NI-Cb         5mk tube           TP309HC         531009         75         8         2         102         236-12NI-Cb         5mk tube           TP3106L         531009         75         8         2         102         236-20NI         5mk tube           TP3106L         531009         75         8         2         102         256-20NI         5mk tube           TP3106L         531001         75         8         2         102         256-20NI-Cb         5mk tube           TP3106L         531001         75         8         2         102         256-20NI-Cb         5mk tube           TP3106L         531001         75         8         2         102         256-20NI-Cb         5mk tube           TP31006L	-213	S30815	S30815	87	80	2	:		102	:	21Cr-11NI-N	Smis. tube
TPJ09H         53090         75         8         2         102         23C-12NL         Smit ube smit ube smit ube smit ube           TPJ09HC         \$30940         75         8         2         102         23C-12NL         Smit ube smit ube           TPJ09HC         \$30941         75         8         2         102         23C-12NL         Smit ube           TPJ09HC         \$31000         75         8         2         102         23C-12NL         Smit ube           TPJ01H         \$31000         75         8         2         102         23C-12NL         Smit ube           TPJ10H         \$31000         75         8         2         102         25C-20NL         Smit ube           TPJ10HL         \$31000         75         8         2         102         25C-20NL-Cb         Smit ube           TPJ10HL         \$31000         75         8         2         102         25C-20NL-Cb         Smit ube           TPJ10HL         \$31000         75         8         2         102         25C-20NL-Cb         Smit ube           TPJ10HL         \$31000         75         8         2         102         25C-20NL-Cb         Smit ube	-213	TP309S	S30908	75	8	2	:	:	102	:	23Cr-12NI	Smis. tube
TP309Cb         530940         75         8         2         102         23C-12NI-Cb         5mlk ubb           TP31015         531009         75         8         2         102         23C-12NI-Cb         5mlk ubb           TP31015         531009         75         8         2         102         23C-12NI-Cb         5mlk ubb           TP31015         531009         75         8         2         102         23C-12NI-Cb         5mlk ubb           TP31016         531009         75         8         2         102         25C-20NI         5mlk ubb           TP3101Cb         5311040         75         8         2         102         25C-20NI-Cb         5mlk ubb           TP3101Cb         5311040         75         8         2         102         25C-22NI-2MO-N         5mlk ubb           TP310MoLN         531050         75         8         102         25C-22NI-2MO-N         5mlk ubb           TP310MoLN         531050         75         8         102         25C-22NI-2MO-N         5mlk ubb           TP310MoLN         531600         75         8         102         25C-22NI-2MO-N         5mlk ubb           TP310MoLN         531600	-213	TP309H	S30909	75	æ	~			201		INCL -JCC	6 min 4.4.
TP309HCb         53041         75         8         2         102         2307-12MI-Cb         5mit. Lube           TP310H         531030         75         8         2         102         2307-12MI-Cb         5mit. Lube           TP310H         531030         75         8         2         102         2307-12MI-Cb         5mit. Lube           TP310H         531030         75         8         2         102         2307-12MI-Cb         5mit. Lube           TP310H         531030         75         8         2         102         2507-20NI-Cb         5mit. Lube           TP310HCh         531030         75         8         2         102         2507-22NI-Cb         5mit. Lube           TP310HCh         531050         75         8         2         102         2507-22NI-Cb         5mit. Lube           TP310HCh         531050         75         8         1         102         2507-22NI-Cb         5mit. Lube           TP310HCh         531050         75         8         1         2507-22NI-Cb         5mit. Lube           TP310HCh         531050         75         8         1         102         2507-22NI-Cb         5mit. Lube	1-213	<b>TP309Cb</b>	S30940	75	6			•		:		Smis. une Serie Arte
TP3105         531008         75         8         2         102         2567-2011         5mit lube           TP3105         531009         75         8         2         102         2567-2011         5mit lube           TP310Cb         531040         75         8         2         102         2567-2011         5mit lube           TP310Cb         531040         75         8         2         102         2567-2011         5mit lube           TP310McLN         531050         75         8         2         102         2567-2011-Cb         5mit lube           TP310McLN         531050         76         8         2         102         2567-2011-Cb         5mit lube           TP310McLN         531050         78         8         1         102         2567-2011-Cb         5mit lube           TP310McLN         531050         75         8         1         102         2567-2211-2010-Cb         5mit lube           TP310McLN         531050         75         8         1         102         2567-2211-2010-Cb         5mit lube           TP310H         531601         70         8         1         102         2567-2211-201-200         5mit lube	-213	TP309HCb	S30941	52	) a		•	•	201	:		Smis. tube
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-213	TPAIDS	Sanna	9 F	<b>b</b> a	ન (	:	•	102	:	ZSUT-1ZNI-UD	Smis. tube
TP310Cb         531040         75         8         2          102         25Cr-20NI-Cb         Smls. Luke           TP310Cb         531040         75         8         2          102         25Cr-20NI-Cb         Smls. Luke           TP310McLN         531050         75         8         2          102         25Cr-20NI-Cb         Smls. Luke           TP310McLN         531050         75         8         2          102         25Cr-22NI-2Mo-N         Smls. Luke           TP310McLN         531050         75         8         1          102         25Cr-22NI-2Mo-N         Smls. Luke           TP310McLN         531050         75         8         1          102         102         25Cr-22NI-2Mo-N         Smls. Luke           TP316         531060         75         8         1          102         16Cr-12NI-2Mo         Smls. Luke           TP316L         531060         75         8         1          102         16Cr-12NI-2Mo         Smls. Luke           TP316L         531060         75         8         1          102         16Cr-12NI-2Mo <td< td=""><td></td><td>TPAINH</td><td>000103</td><td>2 #</td><td></td><td>4</td><td>÷</td><td>:</td><td>102</td><td>:</td><td>25CF-20NI</td><td>Smis. tube</td></td<>		TPAINH	000103	2 #		4	÷	:	102	:	25CF-20NI	Smis. tube
TP310Cb         531040         75         8         2         102         25Cr-20NI-Cb         Smis. Luke           TP310HCb         531041         75         8         2         102         25Cr-22NI-2MO-N         Smis. Luke           TP310HCb         531041         75         8         2         102         25Cr-22NI-2MO-N         Smis. Luke           TP310MoLN         531050         84         2         102         25Cr-22NI-2MO-N         Smis. Luke           TP310MoLN         531050         75         8         1         102         25Cr-22NI-2MO-N         Smis. Luke           TP310         531650         75         8         1         102         102         56Cr-22NI-2MO-N         Smis. Luke           TP316         531651         75         8         1         102         102         102         102         102         102         106Cr-12NI-2MO         Smis. Luke           TP316H         531651         80         8         1         102         102         102         102         102         102         106Cr-12NI-2MO         Smis. Luke           TP316H         531651         80         8         1         102         102         102			100100	2	o	Z	:	:	102	:	25Cr-20Ni	Smls. tube
TP110HCb         S31041         75         8         2         102         25Cr-20N-Cb         5mit ubc           TP310MoLN         S31050         78         8         2         102         25Cr-22NI-2M0-N         5mit ubc           TP310MoLN         S31050         78         8         2         102         25Cr-22NI-2M0-N         5mit ubc           TP310MoLN         S31050         78         8         2         102         25Cr-22NI-2M0-N         5mit ubc           TP310MoLN         S31050         75         8         1         102         25Cr-22NI-2M0-N         5mit ubc           TP310L         S31050         75         8         1         102         102         56Cr-12NI-2M0         5mit ubc           TP310L         S31051         70         8         1         102         102         102         102         102         102         102         102         106         5mit ubc         106         5mit ubc         5mit ubc         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         101         102	-213	TP310Cb	S31040	75	8	2			102		25Cr-20Ni-Ch	Carle tribe
TP310MoLN         531050         78         8         2          102         255C-22NI-2MO-N         Smit ube Smit ube           TP310MoLN         531050         73         8         1          102         255C-22NI-2MO-N         Smit ube           TP310MoLN         531050         75         8         1          102         165C-12NI-2MO         Smit ube           TP310M         531603         70         8         1          102         165C-12NI-2MO         Smit ube           TP310H         531603         70         8         1          102         165C-12NI-2MO         Smit ube           TP310H         531603         75         8         1          102         165C-12NI-2MO         Smit ube           TP310L         531603         75         8         1          102         165C-12NI-2MO         Smit ube           TP310L         531726         531725         531726         531726         531726         5mit ube           S31726         531726         531726         531726         531209         75         8         1         102         165C-12NI-2MO         5mit ube	-213	TP310HCb	S31041	75	8	~			102		25Cr-20NI-Cb	Sents tube
TP310MoLN         S31050         84         8         2          102         25Cr-22N1-2M0-N         Smit, tube           TP316         S31600         75         8         1          102          56Cr-12N1-2M0-N         Smit, tube           TP316         S31600         75         8         1          102          16Cr-12N1-2M0-N         Smit, tube           TP316L         S31603         70         8         1          102          16Cr-12N1-2M0-N         Smit, tube           TP316H         S31651         80         8         1          102          16Cr-12N1-2M0-N         Smit, tube           TP316H         S31651         80         8         1          102          16Cr-12N1-2M0-N         Smit, tube           TP316H         S31726         S31726         80         8         1          102          19Cr-12N1-2M0-N         Smit, tube           S31726         S31726         S31726         S31726         Smit, tube         Smit, tube         Smit, tube           S31726         S31726         S31726         S3172	-213	TPJIOMOLN	S31050	78	8	2			102		25Cr-22Ni-2Mo-N	Similar tutter 1 >1/, In
TP316         531600         75         8         1          102          16C-12N1-2M0         Smit, tube           TP3161         531603         70         8         1          102          16C-12N1-2M0         Smit, tube           TP3161         531603         70         8         1          102          16C-12N1-2M0         Smit, tube           TP3161         531651         80         8         1          102          16C-12N1-2M0         Smit, tube           TP3161         531651         80         8         1          102          16C-12N1-2M0         Smit, tube           TP3161         531651         80         8         1          102          16C-12N1-2M0         Smit, tube           S31726         S31726         S31726         90         8         1          102          19C-12N1-7M0         Smit, tube           S31726         S31726         S31726         80         8         1          102          19C-12N1-7M0         Smit, tube           S31726 </td <td>-213</td> <td>TP310MoLN</td> <td>S31050</td> <td>84</td> <td>80</td> <td>2</td> <td>:</td> <td>:</td> <td>102</td> <td></td> <td>25Cr-22NJ-2Mo-N</td> <td>, the</td>	-213	TP310MoLN	S31050	84	80	2	:	:	102		25Cr-22NJ-2Mo-N	, the
TP316L         531603         70         8         1          102         1.         1.6Cr-12NI-2M0         Smis.           TP316H         531609         75         8         1          102         1.6Cr-12NI-2M0         Smis.           TP316H         531651         80         8         1          102         1.6Cr-12NI-2M0         Smis.           TP316H         531651         80         8         1          102          16Cr-12NI-2M0         Smis.           S31725         531725         75         8         1          102          16Cr-12NI-2M0         Smis.           S31725         531725         75         8         1          102          19Cr-12NI-2M0         Smis.           S31726         S31726         80         8         1          102          19Cr-12NI-2M0         Smis.           S31726         S31726         80         8         1          102          19Cr-15NI-4M0         Smis.           S31726         S31726         S31726         80         1	-213	<b>TP316</b>	S31600	75	8	I	:	•	102		16Cr-12NI-2Mo	tube
TP316H         531609         75         8         1          102         1.         16Cr-12NI-2M0         Smis.           TP316H         531651         80         8         1          102          16Cr-12NI-2M0         Smis.           TP316h         531651         80         8         1          102          16Cr-12NI-2M0         Smis.           S31725         531725         75         8         1          102          19Cr-12NI-2M0         Smis.           S31726         531725         75         8         1          102          19Cr-12NI-2M0         Smis.           S31726         531726         80         8         1          102          19Cr-12NI-2M0         Smis.           S31726         531726         80         8         1          102          19Cr-15NI-4M0         Smis.           S31726         531726         80         7         8         1          102          19Cr-15.NI-4M0         Smis.           S31726         532109         75	-213	TP316L	S31603	70	8	1	:	•	102	:	16Cr-12Ni-2Mo	Smis. tube
TP316N         S31651         B0         B         1          102         16Cr-12NI-2M0-N         Smit.           TP316LN         S31653         75         B         1          102         16Cr-12NI-2M0-N         Smit.           S31725         S31725         T5         B         1          102         16Cr-12NI-2M0-N         Smit.           S31725         S31725         T5         B         1          102          19Cr-12NI-2M0-N         Smit.           S31726         S31726         B0         B         1          102          19Cr-12NI-2M0-N         Smit.           S31726         S31726         B0         B         1          102          19Cr-15NI-4M0         Smit.           S11726         S31726         B0         B         1          102          19Cr-15NI-4M0         Smit.           S11726         S31709         75         B         1          102          18Cr-10NI-T1         Smit.           TP321         S32109         75         B         1          102	-213	TP316H	\$31609	75	80	I	:	:	102		16Cr-12NI-2Mo	Smls. tube
TP316LN       S31653       75       8       1       102       102       102       102       101       501         S31725       S31725       75       8       4       102       102       102       101       501         S31726       S31726       80       8       4       102       102       102       501       501         S31726       S31726       80       8       4       102       102       102       501       501         S31726       S31726       80       8       1       102       102       102       501       501         S31726       S31726       8       1       102       102       102       501       501         S31726       S3109       75       8       1       102       102       102       501       501         TP321       S32109       75       8       1       102       102       102       501       501         TP347       S34700       75       8       1       102       102       102       102       101       501       501         TP348       S34700       75       8       1	-213	TP316N	S31651	80	8	T			201		N_ANC_NOT_A7AT	Carts ticks
S31725       S31725       75       8       4       102       102       102       102       101       200-1270-200-40       Smits         S31726       S31726       B0       B       4       11       102       11       107-1501-400       Smits         S31726       S31726       B0       B       4       11       102       11       107-1501-400       Smits         S31726       S31726       B0       B       1       11       102       11       107-111       Smits         S31726       S32109       75       B       1       11       102       11       Smits         TP321H       S32109       75       B       1       11       102       11       Smits         TP347       S34700       75       B       1       11       102       11       BCr-10NI-T1       Smits         TP347       S34700       75       B       1       11       102       11       BCr-10NI-Cb       Smits         TP348       S34800       75       B       1       1102       1102       11       1102       1101-1001-Cb       Smits         TP348       S34800       7	-213	TP316LN	S31653	75	8	-	•		102	•		
S31726         S31726         B0         B         4         102         2000000000000000000000000000000000000	-213	S31725	S31725	75	6 00	4	•	•	102	:	19CF12MI-2MO-N	Smis. tube
TP321         S32100         75         8         1          102         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 </td <td>-213</td> <td>S31726</td> <td>S31726</td> <td>80</td> <td>80</td> <td>4</td> <td></td> <td></td> <td>201</td> <td>:</td> <td></td> <td></td>	-213	S31726	S31726	80	80	4			201	:		
TP321H         S32109         75         8         1          102         18Cr-10NI-TI           TP347         S34700         75         8         1          102          18Cr-10NI-TI           TP347         S34709         75         8         1          102          18Cr-10NI-Cb           TP347H         S34709         75         8         1          102          18Cr-10NI-Cb           TP348H         S34800         75         8         1          102          18Cr-10NI-Cb           TP348H         S34800         75         8         1          102          18Cr-10NI-Cb	-213	TP321	S32100	75	80	I			102	: :	18Cr-10NI-TI	Smis. tube Smis. tube
TP347         S34700         75         8         1         102         102         102         101         102         101         102         101         102         101         101         102         101         102         101         102         101         102         101         102         101         102         101         102         101         102         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 <td>-213</td> <td>TP321H</td> <td>S32109</td> <td>75</td> <td>8</td> <td>-</td> <td></td> <td></td> <td>201</td> <td></td> <td>18010ML-TI</td> <td>5</td>	-213	TP321H	S32109	75	8	-			201		18010ML-TI	5
TP347H         S34709.         75         8         1          102         105         105         106         101         101         102         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 </td <td>-213</td> <td>TP347</td> <td>S34700</td> <td>75</td> <td>¢</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Smis. tube</td>	-213	TP347	S34700	75	¢	-						Smis. tube
TP348         S34800         75         8         1         102         18Cr-10NI-CD           TP348         S34800         75         8         1          102          18Cr-10NI-CD	-213	TP347H	S34709.	75	) a	• -		•	201	:		Smis. tube
	-213	TP348	S 34800	5.2	) a	• -	:	•	102	:		Smis. tube
	-213	TP348H	S 34800		<b>b</b> a		•	:	102	÷	18Cr-10NI-Cb	Smis. tube

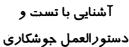
**کروہ مہندسین بین العللی جوش ایران** 

1



QW/QB-422

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩


<u>.</u>91.

خة حاب واكن محفظ ومتعلة به شكر كامث همان .

دوره اموزشی

۲)

1





شرکت کاوش همایش



ا شنایی با تست و دستورالعمل جو شکاری



شرکت کاوش همایش

Ę

C

1

() Q

کروہ مہندسین بین العللی جوش ایران

QW/QB-422

1998 SECTION IX

			,		Welding	Verting Barrel				
Type or Grade	UNS No.	Minimum Specified Tensile, ksi	P.	39	ν N	Group		S- S-	Nominal	Product
XM-15	S38100	75	8	-	:	:	102		18Cr-18Ni-2Si	Smis. tube
÷	K01807	47	1	-	:	:	101	•	c	E.R.W. tube
	J02502	60	1				101		10-0	
	J02503	20		- ~			101	:	C-Mn-SI	Castings Castings
	J03002	70	1	2			101		C-SI	Castings
	J12072	70	4				201		1 JSC- 0 6M0	and have D
	J12082	20	. 4	•		•	101	:		Castings Catings
	J12522	65	e e	-			101	•		Castings Castings
	J21890	70	5 <b>A</b>	I			102		2.25Cr-1Mo	Castings
	J22000	70	4	I	:	:	101		0.75NI-1M0-0.75Cr	Castinos
	J42025	06	58	٦	:		102	:	5Cr-0.5Mo	Castinos
	<b>JB2090</b>	90	58	1	:	:	102	:	9Cr-1 Mg	Castings
	<b>J91150</b>	96	ę	e	:	:	102	:	13Cr	Castings
	:	75	IOA	I	:	•	101	•	Mn-0.5NI-V	Plate > 3 In.
	:	60	10A	٦	÷	•	101	:	Mn-0.5NI-V	Plate, 3 In. & under
	K12524	105	104	I	:	:	101	:	Mn-0.5NI-V	Plate
:	K01201	47	ı	I		:	101	:	c-si	E.R.W. tube
	K03006	60	_	-			101		13 5	
	K03501	20		- 2	•			:		Picture ditting
WP11, CI. 1	:	60	4	1			102			Phyling Hitting
WP12, CI. 1	K12062	60	4	I		:	101		1Cr-0.5Mo	Plaine fittine
VP1	K12821	55	•	-	:	:	101	:	C-0.5Ma	Plaina fittina
CI. 1	K21590	60	5A	1	÷	:	102	:	2.25Cr-1Mo	Piping fitting
	K27035	63	<b>4</b> 6	-	:	:	101	:	2NI-1Cu	Pluing fitting
	CPC147		58		:	•	102	:	5Cr0.5Mo	Piping fitting.
	TLACK				•	•	102	:	9Cr-1 Mo	Piping fitting
	•	5	5	•	:	•	102	÷	9Cr1MoV	Piping fitting
Type 201	S20100	- 95	8	e	:	:	102	•	17Cr-4NI-6Mn	Plate sheet & steln
1 ype 202	S20200	90	8	ŗ	:	:	102	:	18Cr-5Ni-9Mn	Plate sheet & strip
	S20400	95	<b>3</b> 0	£	:		102	-	16Cr-9Mn-2NI-N	
Type XM-19	S20910	100	8	£	:	•	102		22Cr-13NI-5Mn	Plate
Type XM-19	S20910	105	8	~			201		THE INCLUDE	
			)	•	:	•	707	•	CCLFJNC-INC	

47

10



# QW/QB-422 FERROUS P-NUMBERS AND S-NUMBERS (CONT'D) Grouping of Base Metals for Qualification

مهندس تيما هنرسديان

or         UNS         Specified         P.         Group         S.         Group         S.         Group         P.         S.           1-1         \$21800         100         8         3         9         8         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102         102				Minimum		Wel	Welding		Brazing	ing		
Grade         No.         Tentik, kil         No.         <	ec.	Type or	SNN	Specified	ġ	Group	Ϋ́	Group	ظ	Ϋ́	Nominal	Product
Type XM-1/ Type XM-1a         S216.00         100         8         3         102           Type XM-1a         S216.00         95         9         9         3         102           Type XM-1a         S216.00         95         9         9         3         102           Type XM-25         S24000         100         8         3         102         102           Type 2041         S39400         75         8         1         102         102           Type 2041         S39403         75         8         1         102         102           Type 2041         S39403         75         8         1         102         102           Type 2041         S39453         75         8         1         102         102           Type 2041         S39453         75         8         1         102         102           Type 2041         S39453         75         8         1         102         102           Type 2041         S39440         75         8         2         102         102           Type 2051         S39440         75         8         2         102         102	<u>.</u>	Grade	No.	Tensile, ksi	No.	No.	No.	No.	No.	No	Composition	Form
Type XM-14         S21603         90         8         3         102           Type XM-14         S21603         100         8         3         102         102           S21800         S21603         100         8         3         102         102           Type 3041         S21603         100         8         3         102         102           Type 3041         S30403         75         8         1         102         102           Type 3041         S30403         75         8         2         102         102           Ty	•	ype XM-1/	S21600	100	8	<b>~</b>			601		10C MA-MI-MA-M	Chard 0 and-
Type XM-14         S21600         521600         93         94         9         94           Type XM-24         \$24000         100         9         9         9         9         102           Type XM-24         \$24000         100         9         9         1         102           Type XM-21         \$30400         75         8         1         102           Type 204L         \$30400         75         8         1         102           Type 204H         \$30400         70         8         1         102           Type 204H         \$30400         70         8         1         102           Type XM-21         \$30400         70         8         1         102		ype XM-1H	S21603	96	80				102			Silver & strip
\$21800         \$21800         \$3         \$21800         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3         \$3		ype XM-14	S21603	100	8							
Type XM-29         S24000         100         6         3         9         102           Type 3041         \$390403         73         6         1         102         102           Type 3041         \$390403         73         6         1         102         102           Type 3041         \$390403         73         6         1         102         102           Type 3041         \$390431         73         8         1         102         102           Type 3041         \$390431         80         8         1         102         102           Type 3041         \$390432         93         8         1         102         102           Type 3041         \$390432         73         8         1         102         102           Type 3041         \$300433         73         8         2         102         102           Type 3041         \$300431         73         8         2         102         102           Type 3041         \$300431         73         8         2         102         102           Type 3041         \$300431         75         8         2         102         102		21800	S21600	95	60			•		:	ACCOMPTONI-MO-N-	Sheet & strip
Type 302         530200         75         8         1         102           Type 304         530403         73         8         1         102           Type 304         530452         85         8         1         102           Type 304L         530452         90         8         1         102           Type 304L         530452         90         8         1         102           Type 304L         530453         75         8         1         102           S30615         530610         75         8         1         102           Type 3051         530600         75         8         2         102           Type 3091         530600         75         8         2         102           Type 3094         75         8         2         102         102           Type 3094         75         8         2         102	•	ype XM-29	S24000	100	60	~ ~		: :	102		18Cr-3Ni-12Mn	Plate, sheet, & strip Plate sheet & strip
Type 302         530200         75         6         1         1         102           Type 3041         530400         75         6         1         1         102           Type 3041         530400         75         6         1         1         102           Type 3041         530401         75         6         1         1         102           Type 3041         530452         85         1         1         1         102           Type 3041         530452         85         8         1         1         102           Type 3041         530453         75         8         1         1         102           Type 3041         530453         53040         75         8         1         102           Type 3041         530403         75         8         1         102         102           Type 3041         530403         75         8         2         102         102           Type 30415         530403         75         8         2         102         102           Type 30415         530403         75         8         2         102         102												רומוכ, אוככו, מי אורוף
Type 3041         530400         75         8         1         102           Type 3041         530400         75         8         1         102           Type 3041         530403         75         8         1         102           Type 3041         530403         75         8         1         102           Type 3041         530452         90         8         1         102           Type 3041         530453         70         8         1         102           Type 3041         530453         70         8         1         102           Type 3041         530403         75         8         1         102           Type 3041         75         8         2         102         102           Type 30915         530908         75         8         2         102           Type 30915         530908         75         8         2         102           Type 30915         530908         75         8         2         102           Type 30916         75         8         2         102         102           Type 30915         530908         75         8         <		ype 302	S30200	75	8	ĩ	:	:	102	:	18Cr-8NI	Plate. sheet. & strin
Type 304L       \$39403       70       8       1       102         Type 304H       \$39403       75       8       1       102         Type 304H       \$39451       85       8       1       102         Type 304H       \$39452       90       8       1       102         Type 304G       \$39453       530403       75       8       1       102         S3060       \$39040       75       8       1       11       102         Type 309C       \$30909       75       8       2       102       102         Type 300C       \$31040       75       8       2       102       102<		ype 304	S30400	75	80	-	:	:	102		18Cr-8Ni	
Type 304H         \$30409         75         8         1         1         102           Type 304H         \$30452         80         8         1         1         102           Type 304H         \$30452         80         8         1         1         102           Type 304LN         \$30452         90         8         1         102           Type 304LN         \$30452         90         8         1         102           Type 304LN         \$30452         \$30453         75         8         1         102           530600         73         8         1         1         102         102           530415         \$30491         75         8         2         102         102           Type 30950         \$31091         75         8         2         102         102           Type 30950         \$310941         75         8         2         102         102           Type 30950         \$31040         75         8         2         102         102           Type 30950         \$31040         75         8         2         102         102           Type 30650         \$31		ype 304L	S30403	70	80	1	•	•	102		1 RCBNI	
Type 304N         530451         80         8         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1		ype 304H	S30409	75	8	ľ						Plate, sheet, & strip
Type XM-21         530452         90         8         1         102           Type 304LN         \$30452         90         8         1         102         102           Type 304LN         \$30453         75         8         1         102         102           Type 304LN         \$30453         75         8         1         102         102           S10600         \$30000         73         8         1         102         102           S30815         \$30908         75         8         2         102         102           Type 3091         \$30908         75         8         2         102         102           Type 3091         \$30930         75         8         2         102         102           Type 3091         \$31000         75         8         2         102         102           Type 3006         \$31040         75         8         2         102         102           Type 31005         \$31040         75         8         2         102         102           S11200         \$311200         \$311200         \$31120         \$31120         \$31120         \$31120         \$3112		ype 304N	S30451	80	) aa	• •		•	201	:	16CT-6NI	Plate, sheet, & strip
Type XM-21         S30452         90         8         1         1         1         1         1         1         102           Type 304LN         \$30453         75         8         1         1         1         1         102           Type 305         \$30600         \$30453         75         8         1         1         1         102           S30615         \$30409         75         8         2         1         1         1         102           S30815         \$30409         75         8         2         1         102         102           Type 30951         \$30909         75         8         2         1         102         102           Type 30951         \$30941         75         8         2         102         102           Type 31050         \$31008         75         8         2         102         102           Type 31041         75         8         2         102         102         102           Type 31041         75         8         2         102         102         102         102           Type 31041         75         8         2         <		voe XM-21	SAMES	9 <b>4</b>	•	4,	:	•	102	:	18Cr-8Ni-N	Plate, sheet, & strip
Type 304L       530402       70       8       1       1       102         Type 304L       530400       75       8       1       1       102       102         S30600       530600       75       8       1       1       102       102         S30615       530600       75       8       1       1       102       102         S30615       530600       75       8       2       102       102         Type 309H       530909       75       8       2       102       102         Type 309H       530940       75       8       2       102       102         Type 309H       530941       75       8       2       102       102         Type 30041       75       8       2       102       102       102         Type 31040       75       8       2       102       102	·	Von XM-21	304063	6 8	n a	ł	:	:	102	:	18Cr-8Ni-N	Plate
Type 304.10         530600         75         8         1         102           Type 305         530600         70         8         1         102         102           530600         530600         70         8         1         102         102           530600         530600         70         8         1         102         102           530601         530600         75         8         2         102         102           Type 309th         530909         75         8         2         102         102           Type 309th         530940         75         8         2         102         102           Type 309th         530940         75         8         2         102         102           Type 309th         530940         75         8         2         102         102           Type 3100th         531200         75         8         2         102         102           Type 3100th         531200         105         8         2         102         102           Type 3100th         531200         105         8         2         102         102	•		ZCINCC	25	œ	-	:	:	102	:	18Cr-8NI-N	Sheet & strin
Type 305         530600         70         8         1         102         102           530615         530600         78         8         2         102         102           Type 3095         530615         87         8         2         102         102           Type 3095         530908         75         8         2         102         102           Type 3091         530908         75         8         2         102         102           Type 3091         530940         75         8         2         102         102           Type 30910         75         8         2         102         102         102           Type 31000         75         8         2         102         102         102           Type 31000         75         8         2         102         102         102           Type 31000         75         8         2         102         102         102           S31260         531201         75         8         2         102         102           S31254         531260         75         8         1         102         102           S	-	ype sualn	S30453	75	8	I	:	:	102		18Cr-8NI-N	Plate cheet & civin
530600       530605       78       8       1       102         530815       530815       530815       87       8       2       102         7yee 3094       530908       75       8       2       102       102         7yee 3094       530908       75       8       2       102       102         7yee 30940       75       8       2       102       102         7yee 30940       75       8       2       102       102         7yee 30940       75       8       2       102       102         7yee 31050       531040       75       8       2       102         7yee 310Kb       531040       75       8       2       102         7yee 310Kb       531040       75       8       2       102         7yee 310Kb       531260       109       10       1       102         531200       531200       100       104       1       102         531200       531200       100       104       1       102         531200       531200       100       104       1       102         531200       100       10		ype 305	S30500	70	8	1	•		102	•		
\$30815       \$30815       \$30815       \$1       8       2       102       102         Type 309H       \$30909       75       8       2       102       102       102         Type 309H       \$30909       75       8       2       102       102         Type 309H       \$30909       75       8       2       102       102         Type 309H       \$30940       75       8       2       102       102         Type 309Ch       \$30940       75       8       2       102       102         Type 309HCh       \$30940       75       8       2       102       102         Type 310Ch       \$31040       75       8       2       102       102         Type 310Ch       \$31050       8       2       102       102         S11254       \$311200       106       104       1       102	•••	30600	S30600	78	8	-				•		riate, sheet, & strip
SJ0815         SJ0815         SJ0815         B         Z         I/pe         J/pe         J/pe <th< td=""><td></td><td></td><td></td><td></td><td>1</td><td>•</td><td>•</td><td>•</td><td>701</td><td>:</td><td>1/CI-14NI-42I</td><td>Plate, sheet, &amp; strip</td></th<>					1	•	•	•	701	:	1/CI-14NI-42I	Plate, sheet, & strip
Type 3095         530908         75         8         2         102           Type 309th         530909         75         8         2         102           Type 309th         530940         75         8         2         102           Type 309th         530940         75         8         2         102           Type 309th         530940         75         8         2         102           Type 3105h         531040         75         8         2         102           Type 310th         531061         75         8         2         102           Type 310th         531061         75         8         2         102           Type 310th         531260         100         10H         1         102           S11200         531254         94         8         2         102           S11200         531254         94         8         1         102           S11200         531254         94         8         1         102           S11200         531254         94         8         1         102           S11200         531254         94         8		30815	S30815	87	8	2			201			
Type 309H         530909         75         8         2         102           Type 309Ch         530940         75         8         2         102         102           Type 309Ch         530940         75         8         2         102         102           Type 3105         531040         75         8         2         102         102           Type 3105         531040         75         8         2         102         102           Type 31040         75         8         2         102         102         102           Type 31040         75         8         2         102         102         102           Type 31040         75         8         2         102         102         102           S11200         S31250         100         10H         1         102         102           S31250         510         100         10H         1         102         102           S31250         511         75         8         1         102         102           Type 3164         S31609         75         8         1         102         102           Type 3164		ype 309S	S30908	75	đ	•						ð
Type 309Cb         530940         75         8         2         102           Type 309HCL         530941         75         8         2         102         102           Type 3105         531008         75         8         2         102         102           Type 3105         531040         75         8         2         102         102           Type 3106b         531641         75         8         2         102         102           Type 3100bLN         531260         100         104         1         2         102         102           Type 310bLN         531260         100         104         1         1         102         102           S31254         S31250         100         104         1         1         102         1           Type 3164         S31600         75	•	ype 309H	S30909	75	) @		:	•	201		Z3CF-IZNI	Plate, sheet, & strip
Type 309HCL       530941       75       8       2       102         Type 310Cb       531008       75       8       2       102         Type 310Cb       531040       75       8       2       102         Type 310Cb       531040       75       8       2       102         Type 310hCb       531040       75       8       2       102         Type 310hCb       531040       75       8       2       102         S11200       531254       94       8       2       102       102         S11250       531254       94       8       2       102       102         S11254       531260       100       10H       1       102       102         S11254       531260       100       10H       1       102       102         S11260       531260       75       8       1       102       102         Type 316L       531600       75       8       1       102       102         Type 316L       531600       75       8       1       102       102         Type 316L       531640       75       8       1       10		ype 309Cb	S30940	75			:	:	201	:	Z3CL-IZNI	Plate, sheet, & strip
Type 3105       531008       75       8       2       102         Type 310Ch       531008       75       8       2       102         Type 310Kb       531008       75       8       2       102         Type 310McLh       531061       75       8       2       102         Type 310McLh       531061       75       8       2       102         Type 310McLh       531260       100       104       1       102         S31200       531200       100       104       1       102         S31254       531250       100       104       1       102         S31256       531250       100       104       1       102         Type 316L       531560       75       8       1       102         Type 316L       531660       75       8       1       102         Type 316L       531660       75       8       1		VOP 309HCt.	Canoal		0 0		:		102	:	23Cr-12NI-Cb	Plate, sheet, & strip
Type 3105         531008         75         8         2         102           Type 310Cb         531040         75         8         2         102           Type 310Cb         531040         75         8         2         102           Type 310HCb         531040         75         8         2         102           Type 310MoLN         531050         80         8         2         102           S31200         531200         100         10H         1         102           S31254         531250         100         10H         1         102           S31256         531250         100         10H         1         102           S31250         531250         75         8         1         102           Type 316L         531609         75         8         1         102           Type 316LN         531653         75         8				C	ø	7	÷	:	102	÷	23Cr-12NICb	Plate, sheet, & strip
Type 310Cb       531040       75       8       2       100         Type 310HCb       531041       75       8       2       102         Type 310HCb       531050       80       8       2       102         Type 310HCb       531050       80       8       2       102         S31254       531200       100       10H       1       102         S31254       531250       100       10H       1       102         S31254       531250       100       10H       1       102         S31254       531250       100       10H       1       102       102         S31254       531250       100       10H       1       102       102         S31256       531250       100       10H       1       102       102         Type 316L       531609       75       8       1       102       102         Type 316L       531653       75       8       1       102       102         Type 316L       531653       75       8       1       102       102         Type 316L       531653       75       8       1       102		ype 310S	S31008	75	~	ç						
Type 310HCb       531041       75       8       2       102         Type 310M0LN       531050       80       8       2       102         Type 310M0LN       531050       80       8       2       102         531250       531250       100       104       1       102         531254       531250       100       104       1       102         531254       531250       100       104       1       102         531254       531250       100       104       1       102         531254       531250       100       104       1       102         531254       531250       100       104       1       102         531260       75       8       1       102       102         Type 316L       531609       75       8       1       102       102         Type 316LN       531640       75       8       1       102       102       102         Type 316LN       531640       75       8       1       102       102       102         Type 316LN       531653       75       8       1       102       102       <	•	VDe 310Cb	Caloan	24	<b>)</b> (		•	:	707	:	25Cr-20NI	Plate, sheet, & strip
Type 310MoLN       531050       80       8       2       102         531250       531250       100       104       1       102       102         531254       94       8       2       102       102       102         531256       531250       100       104       1       102       102         531256       531250       100       104       1       102       102         531256       531250       100       104       1       102       102         531250       531250       100       104       1       102       102         7ype 316L       531600       75       8       1       102       102         7ype 316H       531609       75       8       1       102       102         7ype 316L       531640       75       8       1       102       102         7ype 316LN       531640       75       8       1       102       102         7ype 316LN       531640       75       8       1       102       102         7ype 316LN       531653       75       8       1       102       102       102 <t< td=""><td>-</td><td>VOE 310HCh</td><td>120162</td><td></td><td>•</td><td>2 0</td><td>÷</td><td>:</td><td>102</td><td>:</td><td>25Cr-20NI-Cb</td><td>Plate, sheet, &amp; strip</td></t<>	-	VOE 310HCh	120162		•	2 0	÷	:	102	:	25Cr-20NI-Cb	Plate, sheet, & strip
531200       531200       100       101       1       102         531254       531254       94       8       4       1       102         531254       531254       94       8       4       1       102         531254       531250       100       104       1       102       102         531256       531260       75       8       1       102       102         Type 316L       531600       75       8       1       102       102         Type 316H       531609       75       8       1       102       102         Type 316H       531609       75       8       1       102       102         Type 316T       531640       75       8       1       102       102         Type 316LN       531640       75       8       1       102       102         Type 316LN       531653       75       8       1       102       102         Type 316LN       531653       75       8       1       102       102         Type 316LN       531653       75       8       1       102       102		VOE 310Mol M	TPOLCS		0	2	:	:	102	:	25Cr -20Ni-Cb	Plate, sheet, & strip
531254       531254       94       101       1       102         531254       531250       100       101       1       102       102         531260       531260       531260       100       104       1       102       102         Type 316       531600       75       8       1       102       102       102         Type 3161       531609       75       8       1       102       102       112         Type 3161       531609       75       8       1       102       112       112         Type 3161       531640       75       8       1       102       112       112         Type 3161       531640       75       8       1       11       102       112         Type 316LN       531653       75       8       1       102       112       112         Type 316LN       531653       75       8       1       112       112       112         Type 316LN       531653       75       8       1       112       112       112	-	11200	000163	200	<b>b</b> .	N -	:	:	102	:	25Cr-22Ni-2Mo-N	Plate, sheet, & strip
S31260       S312c0       100       10H       1       102       102         Type 316       S312c0       100       10H       1       11       102       11         Type 316L       S31600       75       8       1       11       11       102       11         Type 316L       S31609       75       8       1       11       102       11         Type 316H       S31609       75       8       1       11       102       11         Type 316H       S31609       75       8       1       11       102       11         Type 316H       S31653       75       8       1       11       102       11         Type 316LN       S31651       80       8       1       11       11       102       11         Type 316LN       S31651       80       8       1       11       11       102       11         Type 316LN       S31653       75       8       1       11       102       11       102       11				<b>6</b>	HOI	-	:	:	102 ,	:	25Cr-6Ni-Mo-N	Plate, sheet, & strip
Type 316       531600       75       8       1        102          Type 316       531600       75       8       1        102          Type 316L       531600       75       8       1        102          Type 316L       531609       75       8       1        102          Type 316H       531609       75       8       1        102          Type 316H       531635       75       8       1        102          Type 316H       531651       80       8       1        102          Type 316LN       531651       80       8       1        102          Type 316LN       531653       75       8       1        102			-0100	<b>F</b> {	æ	4	:	:	102	:	20Cr-18Ni-6Mo	-
Type 316       \$31600       75       8       1        102         Type 316L       \$31603       70       8       1        102          Type 316H       \$31609       75       8       1        102          Type 316H       \$31609       75       8       1        102          Type 316T       \$31640       75       8       1        102          Type 316Cb       \$31640       75       8       1        102          Type 316LN       \$31651       80       8       1        102          Type 316LN       \$31653       75       8       1        102	•		077766	100	HOI	-	:	:	102	•	25Cr-6.5Nl-3Mo-N	Plate, sheet, & strip
Type 316L       S31603       70       8       1       102         Type 316H       S31609       75       8       1       102       102         Type 316Ti       S31640       75       8       1       102       102         Type 316Cb       S31640       75       8       1       102       102         Type 316Cb       S31640       75       8       1       102       102         Type 316LN       S31651       80       8       1        102          Type 316LN       S31651       80       8       1        102	•	ype 316	S31600	75	8	-			10.2		- 140 1401 -071	
Type 316H         \$31609         75         8         1          102           Type 316Ti         \$31635         75         8         1          102            Type 316Ti         \$31640         75         8         1          102            Type 316Cb         \$31640         75         8         1          102            Type 316LN         \$31651         80         8         1          102            Type 316LN         \$31651         80         8         1          102            Type 316LN         \$31653         75         8         1          102		rpe 316L	Salbua	70	٩	-	•	•	101	:	0W7-IN71-J107	Plate, sheet, & strip
Type 316Ti         S31635         75         8         1          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          10	-	/0e 316H	511609			.,	•	:	102	:	16Cr-12Ni-2Mo	Plate, sheet, & surlp
Type 316Cb         S31640         75         8         1          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          102          10		116 316TH	531675		• •	-	:	:	102	:	16Cr-12Ni-2Mo	Plate, sheet, & strip
Type 316N         S31651         80         8         1          102            Type 316N         S31653         75         8         1          102		ne 316Ch		2;	0	-	:	:	102	:	16Cr-12NI-2M0-TI	Plate, sheet, & strio
Type 316N         S31651         80         8         1         102         102         11         102         11         102         11         102         11         102         11         102         11         102         11         102         11         102         11         102         11         102         11         102         11         11         102         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11 <th11< th=""> <th11< th=""> <th11<< td=""><td></td><td></td><td>060100</td><td>\$</td><td>80</td><td>1</td><td>:</td><td>:</td><td>102</td><td>:</td><td>16Cr-12NI-2Mo-Cb</td><td>- 48</td></th11<<></th11<></th11<>			060100	\$	80	1	:	:	102	:	16Cr-12NI-2Mo-Cb	- 48
Type 316LN S31653 75 8 1 102	•	rpe 316N	127165	UB	a							•
		17 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10		8	0	-	:	:	102	•	16Cr-12NI-2Mo-N	Plate, sheet, & strip
		The Storm	50160	51	æ	-		:	102	:	16Cr-12NI-2Mo-N	Plate sheet & strip
1 ype 31/ 531700 75 8 1 102		Vpe 31/	531700	75	8	-			201			dine in 'ince' and in
												Ļ

**کروہ مہندسین بین المللی جوش ایران** 

### WELDING DATA

QW/QB-422



آشنایی با تست و

دستو *ر*العمل جو شکار ی



شرکت کاوش همایش

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

All Ale en all the

دوره اموزشی

(CONT'D)	
QW/QB-422 FERROUS P-NUMBERS AND S-NUMBERS (CONT'D	Qualification
AND	ē
IBERS	Metals
P-NUM	f Base
FERROUS	Grouping of Base Metals for Qualifical
QW/QB-422	

Type to Grate         UNS         Securities intentify kill         P.         Croup         S.         Grand for kill         P.         Reminision for kill         Press For kill </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Welding</th> <th>ding</th> <th></th> <th>Bra</th> <th>Brazing</th> <th></th> <th></th>							Welding	ding		Bra	Brazing		
Total         No.         Total         No.	Type         Total	5223	Time ar			6				-	Ľ	le sime l	Desker
Type 11/L         53170         73         8         1          102         110         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104<	Type 311.         531101         73         8         1          102          102          102          102          102         114, pret, pre, pret, pre, pret, pret, pret, pret, pre, pret, pret, pret, pre,	No.	Grade	No.	Specified Tensile, ksi	Ϋ́ο,	uorono No.	ν. No.	No.	ч 8.	γ. Š	Composition	Form
Si173         Si173         Si         4         110         102         102         102         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104 <td>Si1725         Si1725         Si172         Si         4         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11</td> <td>SA-240</td> <td>Type 317L</td> <td>\$31703</td> <td>75</td> <td>8</td> <td>1</td> <td></td> <td></td> <td>102</td> <td></td> <td>18Cr-13NI-3Mo</td> <td>Plate, sheet, &amp; strip</td>	Si1725         Si1725         Si172         Si         4         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11	SA-240	Type 317L	\$31703	75	8	1			102		18Cr-13NI-3Mo	Plate, sheet, & strip
331724         531724         63173         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	53172b         73172b         7312b         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416         7416 <t< td=""><td>SA-240</td><td>S31725</td><td>S31725</td><td>75</td><td>80</td><td>4</td><td>:</td><td>:</td><td>102</td><td>÷</td><td>19Cr-15NI-4Mo</td><td>Plate, sheet, &amp; strlp</td></t<>	SA-240	S31725	S31725	75	80	4	:	:	102	÷	19Cr-15NI-4Mo	Plate, sheet, & strlp
S11731         S11731         S1173         S11731         S11331         S11731         S11331         S11331         S11731         S11331         S11331 </td <td>S11233         S1123         60         6         1          102          102          102          102          104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104<td>SA-240</td><td>S31726</td><td>531726</td><td>80</td><td>80</td><td>4</td><td></td><td></td><td>102</td><td>:</td><td>19Cr-15.5NI-4Mo</td><td></td></td>	S11233         S1123         60         6         1          102          102          102          102          104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104         104 <td>SA-240</td> <td>S31726</td> <td>531726</td> <td>80</td> <td>80</td> <td>4</td> <td></td> <td></td> <td>102</td> <td>:</td> <td>19Cr-15.5NI-4Mo</td> <td></td>	SA-240	S31726	531726	80	80	4			102	:	19Cr-15.5NI-4Mo	
S13003         S13003         S9         101         1         2267-5NH-3Mo-N         Plats         5444           Type 3211         S32100         T5         B         1          102          2567-5NH-3Mo-N         Plats         5446.           Type 3214         S32100         T5         B         1          102          2567-5NH-3Mo-N         Plats         5446.           S32750         S37250         109          101         1          102          2567-5NH-3Mo-N         Plats         5446.           S32750         S37750         109         101         1          102          2567-5NH-3MO-N         Plats         5446.           Type 349         S37700         90         1014         1          102          2567-5NH-MO-N         Plats         5446.           Type 349         S37700         75         8         1          102          2567-9NH-MO-N         Plats         5446.         5444.         5444.         5444.         5444.         5444.         5444.         5444.         5444.         5444.         <	531801         531801         50         101         1         22C-MI-JMO-N         Plat, press, pre	5A-240	S31753	531753	80					102		18Cr-13NI-3Mo-N	
Type 321         532100         75         8         1          102          16C-10N1-11         Plat, pret, pret	Type 321         532100         75         8         1          102          102          102          102          102          102          103          103          103          103          102          102          102          102          103          103          104         11          102          103          104         11          102          256-9KH-3M-4W-4         Plate, plate, plate, sheet,	SA-240	S31803	531803	90	HOL	1	:		:	:	22Cr-5Ni-3Mo-N	Plate, sheet, & strip
Type 321H         512109         75         8         1          102          106 - 10Ni-11         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, steet, states, sheet, states, sheet, states, sheet, states, sheet, states, sheet, states, sheet, states, state, sta	Type 321H         S12100         T5         B         1          102          16C-10NI-TI         Plat, stert, start, start, stert, start, start, start, stert, start, sta	SA-240	Type 321	532100	75	8	1	:		102	:	18Cr-10NI-TI	Plate, sheet, & strip
532560         532560         110         101         1          102         25G-SNI-3MO-2CI         Plate, phet, ph	532560         532560         110         10H         1          102          25Cr-5NI-3M0-Vr-         Plate, phet, phet, plate, plate	SA-240	Type 321H	SJ2109	75	80	1	÷	:	102	:	18Cr-10NI-TI	
532760         532760         109          101         1          102         25C-BNI-3MO-W-         Plate, sheet,	532760         532760         109          101         1          102         25C-BNI-3MO-W-         Plate, sheet,	SA-240	<b>S32550</b>	<b>S32550</b>	110	HOL	ł			102	:	25Cr-5Nl-3Mo-2Cu	Plate, sheet, & strip
Type 329         S32900         90         10H         1	Type 379         S32900         90         10H         1	SA-240	S32760	S32760	109	:	:	HOI	l	•	102	25Cr-8NI-3Mo-W-	Plate, sheet, & strip
Type 329         532900         90         10H         1          102          26GML-M0         Plate, sheet, sheet, sheet, sheet, sheet, sheet, type 34           Type 341         534700         75         8         1          102          16G10NI-Gb         Plate, sheet, sh	Type 239         532900         90         10H         1          102          26Cr-MI-Mo         Plats, sheet, sh											Cu-N	
537950         537950         90         10H         1          102          26C-MM-MO-M         Plats, pret, pret	532950         532950         90         10H         1          102          26C-1NH-Mo-N         Plate, sheet, sh	SA-240	Type 329	S32900	96	IOH	I	:	:	102	÷	26Cr-4Ni-Mo	Plate, sheet, & strip
Type 347         S34700         75         8         1          102          16C-10NI-Cb         Plate, sheet, steet, steed, steet, steed, steet, steed, ste	Type 347         S 34700         75         8         1          102          16C-10NI-Cb         Plats, sheet, sh	SA-240	S 32950	S32950	96	IOH	1	:	:	102		26Cr-4Ni-Mo-N	Plate, sheet, & strip
Type 347H         S34709         75         8         1          102          16C-10NI-Cb         Plate, sheet, states         7ype 348         S34809         75         8         1          102          16C-10NI-Cb         Plate, sheet, states         S49000         55         7         1          102          16C-10NI-Cb         Plate, sheet,	Type 347H         S34709         75         8         1          102          16C-10NI-Cb         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, regions           Type 348         S34800         75         8         1          102          18C-10NI-Cb         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, regions         2534800         75         8         1          102          18C-10NI-Cb         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, regions         254000         55         7         1          102          18C-10NI-Cb         Plate, sheet, sheet, sheet, sheet, regions         254000         55         7         1          102          18C-10NI-Cb         Plate, sheet, sheet, regions         254000         55         7         1          102          12C-1AI         Plate, sheet, regions         254640         7         102          Plate, sheet, regions         254640         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25         25	SA-240	Type 347	S34700	75	8	ľ	:	•	102	:	18Cr-10Ni-Cb	Plate, sheet, & strip
Type 348         \$34800         75         8         1          102          16C-10NI-Cb         Plate, sheet, she	Type 348         \$34800         75         8         1          102          16C-10NI-Cb         Plate, sheet, she	SA-240	Type 347H	S34709	75	ø	I	:	÷	102	:	18Cr-10NI-Cb	Plate, sheet, & strip
Type 348H         S34609         75         8         1          102          18Cr-10NI-Cb         Plate, sheet, states, st	Type 348H         S34609         75         8         1          102         Is GC-10NI-Cb         Plate, sheet, sheet, rest, re	SA-240	Type 348	S34800	75	8	I			102	:	18Cr-10NI-Cb	Plate. sheet. & strip
Type XM-15         S 38100         75         8         1          102          18Cr-1AI         Plate, sheet, sheet, type 403         5 40500         65         7         1          102          18Cr-1AI         Plate, sheet, sheet, type 403         5 40500         55         7         1          102          13Cr         Plate, sheet, sheet, type 410         S 41000         55         7         1          102          13Cr         Plate, sheet, sheet, type 410         S 41000         55         6         1          102          13Cr         Plate, sheet, sheet, type 410         S 41000         65         6         1          102          13Cr         Plate, sheet, sheet, type 410         S 4100         65         1          102          13Cr         Plate, sheet, type 410         S 4100         65         1          102          11Cr         Plate, sheet, type 410         S 410         Plate, sheet, type 410         S 410         Plate, sheet, type 410         S 4100         S 410         Plate, sheet, type 410         S 410         Plate, sheet, type 410         S 410         S 410 <th< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>SA-240</td><td>Type 348H</td><td>S34809</td><td>75</td><td>80</td><td>I</td><td>:</td><td>:</td><td>102</td><td>:</td><td>18Cr-10NICb</td><td>Plate, sheet, &amp; strip</td></th<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SA-240	Type 348H	S34809	75	80	I	:	:	102	:	18Cr-10NICb	Plate, sheet, & strip
Type 405         \$40500         60         7         1          102          12Cr-1Al         Plate, sheet, sheet, sheet, type 410         Plate, sheet, sheet, sheet, type 410         \$40900         55         7         1          102          13Cr         Plate, sheet, sheet, sheet, type 410         \$40000         55         6         1          102          13Cr         Plate, sheet, sheet, sheet, type 410         \$41000         65         6         1          102          13Cr         Plate, sheet, sheet, type 410         \$41000         65         6         1          102          13Cr         Plate, sheet, sheet, type 410         \$41000         65         4          102          13Cr         Plate, sheet, sheet, type 410         \$41000         65         1          102          13Cr         Plate, sheet, sheet, type 410         \$41000         65         1         1          Plate, sheet, sheet, type 410         \$416, sheet, sheet, type 410         \$416, sheet, sheet, type 410         1         Plate, sheet, sheet, type 410         Plate, sheet, sheet, type 410         Plate, sheet, sheet, type 410         1<102         27Cr-1M0         Plate,	Type 405         540500         60         7         1          102          12Cr-1Al         Plate, sheet, sheet, sheet, sheet, rest, re	5A-240	Type XM-15	S38100	75	6	ľ	:	:	102	÷	18Cr-18NI-2SI	Plate, sheet, & strip
Type 409         \$40900         55         7         1          102          11Cr-Ti         Plate, sheet,	Type 409         \$ \$40900         55         7         1          102          11C-T1         Plate, sheet, law, sheet, sheet, sheet, sheet, sheet, sheet, s	5A-240	Type 405	S40500	60	7	1	:	:	102	:	12Cr-1AI	Plate, sheet, & strip
Type 410         S41000         65         6         1          102          13Cr         Plate, sheet, she	Type 410         \$41000         65         1          102          13Cr         Plate, sheet, s	5A-240	Type 409		55	7	-	:	•	102	:	11Cr-TI	Plate, sheet, & strip
Type 4105         541008         60         7         1          102         13Cr         Plate, sheet, sh	Type 410S         \$4100B         60         7         1          102          13Cr         Plate, sheet, sh	SA-240	Type 410	S41000	65	q	1	:	:	102	:	13Cr	Plate, sheet, & strip
S41500         S41500         115         6         4         · · · · · · · · · · · · · · · · · · ·	S41500         S41500         115         6         4         · · · · · · · · · · 102         · · · · · · · 13Cr-4.5NI-Mo         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, steet, steed, stee, steet, steed, steed, stee, steed, steed, steed	3A-240	Type 410S	S41008	60	7	I	:	:	102	:	13Cr	Plate, sheet, & strip
Type 429         S42900         65         6         2         · · · · · · · · · · · · · · · · · · ·	Type 429         542900         65         6         2          102          15Cr         Plate, sheet, sheet, sheet, sheet, sheet, sheet, street, streed, stree, streed, street, street, streed, street, street, streed	5A-240	S41500	S41500	115	9	4	:		102	:	13Cr-4.5NI-Mo	Plate, sheet, & strip
Type 430         543000         65         7         2          102          17Cr         Plate, sheet, she	Type 430         S43000         65         7         2          102          17Cr         Plate, sheet, sheet, sheet, sheet, street, streed, streed, street, street, streed, street, street, streed, str	3A-240	Type 429	S42900	65	\$	2	:	•	102	:	15Cr	Plate, sheet, & strip
Type 439         543035         65         7         2          102         1.7Cr-TI         Plate, sheet,	Type 439         543035         65         7         2          102          17Cr-Ti         Plate, sheet, sheet, sheet, sheet, stated, states, sheet, states, s	3A-240	Type 430	S43000	65	7	2	:	•	102	:	17Cr	Plate, sheet, & strip
S44400       S44400       60       7       2        102        18Cr-2M0       Plate, sheet, shee	S44400         S44400         60         7         2          102          18Cr-2Mo         Plate, sheet, s	5A-240	Type 439	S43035	65	7	2	:	•	102	:	17Cr-TI	Plate, sheet, & strip
Type XM-33         S44626         68         101         1          102          27Cr-1Mo-T1         Plate, sheet, set, sheet, sheet, set, sheet, set, sheet, set, sheet, set, sheet, sheet, set, sheet, sheet, sheet, set, sheet, sheet, sheet, sheet, set, sheet, set, sheet, set, sheet, set, sheet, set, sheet, sheet, sheet, set, sheet, set, sheet, s	Type XM-33         S44626         68         101         1          102          27Cr-1Mo-T1         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, states           Type XM-27         S44627         65         101         1          102          27Cr-1Mo-T1         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, states           S44635         S44650         85         101         1          102          25Cr-4Ni-4Mo-T1         Plate, sheet, sh	5A-240	S44400	S44400	60	4	2	:	•	102	:	18Cr-2Mo	Plate, sheet, & strip
Type XM-27         S44627         65         101         1          102          27Cr-1Mo         Plate, sheet, sh	Type XM-27         S44627         65         101         1          102          27Gr-1Mo         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, states           S44635         S44635         90         101         1          102          25Gr-4Ni-4Mo-TI         Plate, sheet, states           S44660         S44660         85         10K         1          102          26Gr-3Ni-3Mo         Plate, sheet, s	5A-240	Type XM-33	S44626	68	101	I	:	:	102	•	27Cr-1Mo-TI	Plate, sheet, & strip
S44635       S44635       90       101       1        102        25Cr-4Ni-4Mo-Ti<       Plate, sheet, s	S44635         S44635         90         101         1          102          25Cr-4Ni-4Mo-Ti         Plate, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, sheet, stated         244660         85         10K         1          102          25Cr-4Ni-4Mo-Ti         Plate, sheet, stated         244600         80         10J         1          102          25Cr-4Ni-3Mo         Plate, sheet,	SA-240	Type XM-27	S44627	65	101	1	:	•	102	:	27Cr-1Mo	
S44660         S54660         B5         10K         1          102         26Cr-3Ni-3Mo         Plate, sheet, sh	S44660         S44660         B5         10K         1          102          26Cr-3Ni-3Mo         Plate, sheet, sh	5A-240	S44635	S44635	96	101	I	:		102	:	25Cr-4Ni-4Mo-Ti	Plate, sheet, & strig
S44700         S44700         B0         10J         1          102          29Cr-4Mo         Plate, sheet, &           S44800         S44800         B0         10K         1          102          29Cr-4Mo         Plate, sheet, &           S44800         S44800         B0         10K         1          102          29Cr-4Mo         Plate, sheet, &           TP201         S20100         95         8         3          102          27Cr-4Ni-6Mn         Weided tube           TP202         S20100         95         8         3          102          29Cr-4Ni-6Mn         Weided tube	S44700         S44700         B0         10J         1          102          29Cr-4Mo         Plate, sheet, &           S44800         S44800         B0         10K         1          102          29Cr-4Mo         Plate, sheet, &           S44800         S44800         B0         10K         1          102          29Cr-4Mo         Plate, sheet, &           TP201         S20100         95         8         3          102          17Cr-4Ni-6Mn         Welded tube           TP202         S20200         90         8         3          102          18Cr-5Ni-9Mn         Welded tube	SA-240	S44660	S44660	85	10K	1	:	:	102	:	26Cr-3Ni-3Mo	Plate, sheet, & strip
S44800         S44800         B0         10K         1         29Cr-4Mo-2Ni         Plate, shect, sh	S44800         S44800         B0         10K         1          102         29Cr-4Mo-2Ni         Plate, shect, sh	5A-240	S44700	S44700	80	101	1	:		102	:	29Cr-4Mo	-0
TP201 S20100 95 8 3 102 17Cr-4Ni-6Mn TP202 S20200 00 0 3	TP201 S20100 95 8 3 102 17Cr-4Ni-6Mn TP202 S20200 90 8 3 102 18Cr-5Ni-9Mn	SA-240	S44800	S44800	80	10K	-	:	•	102	•	29Cr-4Mo-2NI	Plate, sheet, & strip
	TP202 520200 90 8 3 102 18Cr-5NI-9Mn	SA-249	TP201	S20100	95	đ				201		17C4Ni-6MA	Maldad tube
		54-240	TP202	52020U	2	c a	• •	:	:	701	:		

QW/QB-422

22

### 1998 SECTION IX

كروه مهندسين بين المللي جوش ايران

اشنایی با تست و دستو *ر*العمل جو شکاری



شرکت کاوش همایش

مهتدس ليما هترمنديان دوره لموزشى كروة مهندسين بين المللي جوش أيران/ ١٣٧٩ 

ضميمه ۴

حق چاپ و تکتر ، محفوظ و متعلق به شرکت کاوش همایش می باشد.

U		Steel Specification R	equirements	ts			equircments	Filler Metal Provinence			
•									MUCHNEURS		
. 0 3			Minimu Point/S	Minimum Yield Point/Strength	R L	Tensile Range		Minim	Minimum Yield Point/Streneth	Tensile	Tensile Strength
~	Ste	Steel Specification ^{1, 2}	ksi	MPa	kui	MPa	Electrode Specification ^{3, 6}		NB		Valigo
	ASTM A364		¥.	250	SR-RD	400 550			MLa	5	Mra
	ASTM A53	Grade B	35	240	60 min						
	ASTM A106	Grade B	2	040			_				
	<b>IEIN MTSA</b>	Grades A, B, CS, D, DS, E	2				~				
	ASTM ALSO	Grade R					-	48	166	60 min	414 min
	ASTM A181	Grade V15	s :	241	S min	414 min	_	53-72	365-496	70 min	487 min
			c,	240	60 min	415 min	AWS A5.57				
	MCK MICK	Crade A	£	228	45 min	310 min	E70XX-X	57 60	300 000		
		Grade B	42	290	58 min	400 min	L.,			020-010 /0-/0 min 480-020 min	480-520 m
	ASTM ASOI		36	250	5 <b>8</b> min	400 min					
	ASTM A516	Grade 55	υt	205	27.22	300 616					
		Grade 60	5			C10-000		48	330	60-80	415-550
	ACTA AS2A		70	077	20-20	415-550	F7XX-EXXX	58	400	70-05	440.650
	ATCV MICO		35	240	60-85	415-586	AWS A5.23	1	2		
-			õ	205	55-80	380-550	F7XX-EXX-XX	88	100	20.05	
-	AZCA MICA		42	290	60-85	415-585		\$		(1-1)	480-060
	ASTM A570	Grade 30	9	205	49 min	340 min	CMAW				
		Grade 33	33	230	52 min	360 min					
		Grade 36	.36	250	53 min	365 min		ł			
		Grade 40	4	275	55 min	280	V-MINA	8	ş	70 min	480 min
		Grade 45	45	310							
		Grade 50	50	145	ki min						
	ASTM A573	Grade 65	35	240			_				
		Grade 58	1								
	ASTM A709	Grade 36 ⁴					AWS A5.20				
	API SI				02-20	400 550	E6XT-X	84	330	60 min	
			<b>5</b>	240	8	415	E7XT-X	82	5		
		Urade A42	4	290	8	415	(Except -2, -3, -10, -13, -14, -Cev		}		480 min
	C9V	Grades A. B. D. CS, DS			58-71	400-490	AWS A5.29 ¹				
		Grade E			15 93	000 000					

42/Pregualification of WPSs

۲٥

63

Ć

STD.AUS D1.1-ENGL 1998 50 0784265 0508489 037 5

مهندس نيما هنرشذيلن

. الحاد وحقدها و متعانی وه شاکه کامش

1.

ضمیمه ۵

• J 💊

دوره اموزشی

	Steel Specification Requirements	quirement	2			Filler M	Filler Metal Requirements	irements		
		Minimuth Yield	th Yield	Tensile	sile		Minimum Yicld	m Yicld	Tensile	Tensile Strength
	, A	Point/Strength	trength	Rar	Range		Point/Strength	trength	R.	Runge
Sto	Steel Specification ^{1, 2}	ksi	MPa	ksi	MPa	Electrode Specification ^{3.6}	ksi	MPa	ksi	MPa
ASTM ALSI	Grades AH32, DH32, EH32	46	315	68-85	470-585	SMAW				
	Grades AH36, DH36, EH36	51	350	06-12	490-620	AWS A5.1				
ASTM A441		40-50	275-345	60-70	415-485	E7015, E7016	58	399	70 min	482 min
ASTM ASI6	Grade 65	35	240	65-85	450-585	E7018, E7028				
	Grade 70	38	260	70-90	485-620	AWS A5.57				
<b>ASTM AS37</b>	Class 1	45-50	310-345	65-90	450-620	E7015-X, E7016-X	57-60	390-415	7075 min	390-415 70-75 min 480-520 min
<b>ASTM AS72</b>	Grade 42	42	290	60 min	415 min	E7018-X				
<b>ASTM AS72</b>	Grade 50	50	345	65 min	450 min	SAW				
ASTM A5885	(4 in. and under)	50	345	70 min	485 min	AWS A5.17 .				
<b>ASTM A595</b>	Grade A	55	380	65 min	450 min	F7XX-EXXX	58	004	70-95	480-650
	Grades B and C	3	415	70 min	480 min	AWS A5.237				
ASTM A606 ⁵		45-50	310-540	65 min	450 min	F7XX-EXX-XX	58	<b>4</b> 00	70-95	480-660
<b>ASTM A607</b>	Grade 45	45	310	60 min	410 min	GMAW				
	Grude S0	50	345	65 min	450 min	AWS A5.18				
	Grade 55	55	380	70 min	480 min	ER70S-X	58	<b>00</b> 7	70 min	480 min
ASTM A618	Grades Ib, II, III	46-50	315-345	63 min	450 min					
<b>ASTM</b> A633	Grade A	42	290	63-83	430-570					
	Grades C. D	50	345	70-90	485-620	FCAW				
	(2-1/2 in. and under)					AWS A5.20				
<b>ASTM A709</b>	Grade 50	50	345	65 min	450 min	E7XT-X	58	400	70 min	480 min
	Grade SUW	50	345	70 min	485 min	(Except -2, -3, -10, -13, -14, -GS)				
<b>ASTM A710</b>	Grade A, Class 2 > 2 in.	55	380	65 min	450 min	AWS A5.297				
<b>ASTM A808</b>	(2-1/2 in. and under)	42	290	60 min	415 min	E7XTX-X	58	904	70-90	490-620
<b>ASTM A913</b>	Grade 50	SI	345	65 min	450 min					
API 2H°	Grade 42	42	290	62-R0	470-550					
	Grade 50	ŝ	345	70 min	485 min					
API 2W	Grade 42	42-67	290-462	62 min						
	Grade 50	50-75	345-517	65 min	448 min					
	Grade SOT	800	345-552	70 min	483 min					
<u>API 2Y</u>	Grade 42	42-67	290-462	62 min	427 min					
	Grade 50	50-75	345-517	65 min	• •					
	Grade 50T <	50-80	345-552	70 min	483 min					
API SL	Grade X52	52	0,6	66-72	455-495					
ABS	Grades AH32, DH32, EH32	45.5	315	71-90	490-620					
	Cardan AUTA DUTA EULAS	Ş	030	20.00	007 007					

STD.AUS D1.1-ENGL 1998 . 0784265 0508490 851 .

مهندس نيما هنرمنديان

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

شرکت کاوش همایش

.





ا شنایی با تست و دستو *ر*العمل جو شکاری

R

Ċ

0

دوره أموزشي

۲4

7

		-				ble 3.	Table 3.1 (Continued)	inued)				
O		Steel Specification Requirements	ition Requir	ements				Filler N	Filler Metal Requinements	i rements		
- 0 -	•		M.	Minimum Yield PoinVStrength	Yield ngth	Tensile Range	sile		Minimu PoinVS	Minimum Yield Poin/Strength	Tensile Ra	Tensile Strength Range
٩	Stei	Steel Specification ^{1, 2}		ksi	MPa	Ē	MPa	Electrode Specification ^{3, 6}	ksi	MPa	lsi	MPa
	<u>Art 2W</u>	Grade 60	8	1.	1	75 min	517 min	SM				
	VI IV	Crade 60	ଞ	~ 8 8	129-11	<u>75 min</u>	517 min	E8015-X, E8016-X	67-80	67-80 460-550 80 min	80 min	550 min
	ASTM A572	Grade 60	v	8	415	75 min	515 min	E8018-X				
		Grade 65	U	65	450	80 min	550 min	SAW				
	ASTM A537	Class 2 ⁵	4	46-60 31	5-415	80-100	550-690	315-415 80-100 550-690 AWS A5 237				·
=	<b>ASTM A633</b>	Grade E ⁵		55-60 38	0415	75-100	515-690	380-415 75-100 515-690 F8XX-EXX-XX	ž	470		100 VVV
	ASTM A710	Grade A, Class 2 🛛 52 i	Ľ.	60-65 41	415-450 72 min	72 min	495 min	GMAW				(KD-000
	<b>ASTM A710</b>	Grade A, Class 3 > 2 in.		60-65 41	415-450	70 min	485 min	AWS A5.287				
	ASTM A913	Grade 60	Ψ.	81	415	<u>75 min</u>	520 min		<b>68</b>	470	80 min	550 min
		Grade 65		2	췽	80 min	550 min	FCAW AWS A5.297				
								E8XTX-X	89	470	80-100	550-690

Noces:

۵

ضميمه

 $\mathbf{\hat{x}}_{a}$ 

Is joints involving base metals of different groups, either of the following filler metals may be used: (1) that which matches the higher strength base metal, or (2) that which matches the lower strength base metal and produces a low-hydrogen deposit. Preheating shall be in conformance with the requirements applicable to the higher strength group.
 Match AFT standard 2B (fabricated tubes) according to steel used.

 When welds are to be stress-relieved, the deposited weld metal shall not exceed 0.05 percent vanadium.
 Only low-hydrogen electrones shall be used when welding A36 ur A709 Grade 36 steel more than 1 in. (25.4 mm) thick for cyclically loaded structures.
 Special welding materials and WPS (e.g., B80XX-X tow alloy electrodes) may be required to match the notch toughacts of base metal (for alplications involving impact loading or kow temperature), or for atmospheric corrosion and weathering characteristics (see 3.7.3).

The designation of ER70S-1B has been reclassified as ER80S-D2 in A5 28-79. Prequalified WPSs prepared prior to 1981 and specifying AWS A5.18, ER70S-1B, may now use AWS A5.28-79 ER80S-D2 

when welding steels in Groups I and II. -~

Filter nectals of alwy group B3, B3L, B4, B4L, B5, B5L, B6, B7L, B8, B8L, or B9 in ANSVAWS A5.5, A5.23, A5.28, or A5.29 are not prequalified for use in the as welded condition. See Tables 2.3 and 2.5 for allowable stress requirements for matching filler metal. The hear input limitations of 5.7 shall not apply to ASTM A913 Grade 60 or 65. 6

्र विक

 $\mathcal{C}$ 

¥. .

12 *

بغو بعدلي:

1.1

🖬 0784265 0508491 798 STD.AWS -ENGL 1998 Dl • L

آشنایی با تست و

دستو *ر*العمل جو شکاری

√ ∕



44/Pregualification of WPSs



شرکت کا



کروہ مہندسین بین العللی جوش ایران

آشنایی با تست و

دستو *ر*العمل جو شکاری



شرکت کاوش همایش

QW-430

۲,

### 1998 SECTION IX

QW-432

**(** )

(

دوره اموزشی

### QW-430 F-NUMBERS

### QW-431 General

The following F-Number grouping of electrodes and welding rods in QW-432 is based essentially on their usability characteristics, which fundamentally determine the ability of welders to make satisfactory welds with a given filler metal. This grouping is made to reduce the number of welding procedure and performance qualifications, where this can logically be done. The grouping does not imply that base metals or filler metals within a group may be indiscriminately substituted for a metal which was used in the qualification test without consideration of the compatibility of the base and filler metals from the standpoint of metallurgical properties, postweld heat treatment design and service requirements, and mechanical properties.

F-No.	ASME Specification	AWS Classification
	Steel and Steel Allo	15
1	SFA-5.1	EXX20
1	SFA-5.1	EXX22
1	SFA-5.1	EXX24
1	SFA-5.1	- EXX27
1	SFA-5.1	EXX28
1	SFA-5,4	
1	SFA-5.4	EXXX(X)-26
1	SFA-5.5	EXX20-X
1	SFA-5.5	EXX27-X
2	SFA-5.1	EXX12
2	SFA-5.1	EXX13
2	SFA-5.1	EXX14
2	SFA-5.1	EXX19
2	SFA-5.5	E(X)XX13-X
3	SFA-5.1	EXX10
3	SFA-5.1	- EXX11
3	SFA-5.5	E(X)XX10-X
3	SFA-5.5	E(X)XX11-X
4	SFA-5.1	EXX15
4	SFA-5.1	EXX16
4	SFA-5.1	EXX18
4	SFA-5.1	EXX18M
4	SFA-5.1	EXX48
4	SFA-5.4 other than austenitic and duple:	
4	SFA-5.4 other than austenitic and duple:	EXXX(X)-16
4	SFA-5.4 other than austenitic and duples	

QW-432

**F-NUMBERS** 

A99 A00

ضميمه ۶

باشد

مهندس ليما هنومنديان

. محفوظ و متعلة به شركت كاوث همات م



ť.



كروه مهندسين بين المللي جوش ايران

آشنایی با تست و

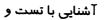




شرکت کاوش همایش

### WELDING DATA

QW-432


به المحقية

### QW-432 (CONT'D) F-NUMBERS

F-No.	ASME Specification	AWS Classification
	Steel and Steel Alloys (cont'd)	
		E(X)XX15-X
4	SFA-5.5	E(X)XX16-X
4	SFA-5.5	E(X)XX18-X
4	SFA-5.5	E(X)XX18M
4	SFA-5.5 SFA-5.5	EXXXIGMI
4	91 3 - <del>-</del> 3	
5	SFA-5.4 austenitic and duplex	EXXX(X)-15
5	SFA-5.4 austenitic and duplex	EXXX(X)-16
5	SFA-5.4 austenitic and duplex	EXXX(X)-17
	SFA-52	All classifications
6	SFA-3.9	All classifications
6	SFA-5.17	All classifications
6	SFA-5.18	All classifications
6	SFA-5.10 SFA-5.20	All classifications
6	SFA-5.22	All classifications
6	SFA-5.23	All classifications
6	SFA-3.23 SFA-5.25	All classifications
6	SFA-3.23 SFA-5.26	All classifications
6	SFA-5.28	All classifications
6	SFA-5.29	All classifications
6	SFA-5.30	INMS-X
6		INSXX
6	SFA-5.30 SFA-5.30	IN3XX(X)
6	•····	
	Aluminum and Aluminum Alloys	
21	SFA-5.3	E1100
21	SFA-5.3	E3003
21	SFA-5.10	ER1100
21	SFA-5.10	R1100
21	SFA-5.10	ER1188
21	SFA-5.10	R1188
~~	SFA-5.10	ER5183
22	SFA-5.10 SFA-5.10	R5183
22	SFA-5.10	ER5356
22	SFA-5.10	R5356
22	SFA-5.10	ER5554
22	SFA-5.10 SFA-5.10	P5554
22		ER5556
22	SFA-5.10	R5556
22	SFA-5.10	ER5654
22 22	SFA-5.10 SFA-5.10	R5654
		E4043
23	SFA-5J	E4043 ER4009
23	SFA-5.10	R4009
23	SFA-5.10	ER4010
23	SFA-5.10	R4010
23	SFA-5.10	
23	SFA-5.10	R4011
23	SFA-5.10	ER:043
23	SFA-5.10	R4043
23	SFA-5.10	ER4047
23	SFA-5.10	R4047
() () () () () () () () () () () () () (	SFA-5.10	ER4145

مهندس ليما هنرمنديان

دوره اموزشی * *



دستورالعمل جو شکا*ر*ی



۲.

شرکت کاوش همایش

í

Ċ

F-No.	ASME Specification	AWS Classificatio
	Aluminum and Aluminum Alle	oys (cont'd)
23	SFA-5.10	R4145
23	SFA-5.10	ER4643
23	SFA-5.10	R4643
24	SFA-5.10	R205.0
24	SFA-5.10	R-C355.0
24	SFA-5.10	R-A356.0
24	SFA-5.10	
24	SFA-5.10	R357.0 R-A357.0
25	SFA-5.10	50000
25	SFA-5.10	ER2319 R2319
	Copper and Copper All	
		~,-
31 31	<b>SFA-5.6</b> SFA-5.7	ECu
31	SFA-3./	ERCu
32	SFA-5.6	ECuSi
32	SFA-5.7	ERCUSHA
33	SFA-5.6	ECuSn-A
33	SFA-5.6	ECuSn-C
33	SFA-5.7	ERCuSn-A
4	SFA-5.6	- ECuNi
14	SFA-5.7	ERCUNI
4	SFA-5.30	IN67
5	SFA-5.8	RBCuZn-A
5	SFA-5.8	RBCuZn-B
5	SFA-5.8	
5	SFA-5.8	RBCuZn-C RBCuZn-D
6	SFA-5.6	ECuAl-A2
6	SFA-5.6	ECuAl-B
6	SFA-5.7	ERCuAI-A1
6	SFA-5.7	ERCUAI-A2
6	SFA-5.7	ERCuAl-A3
7	SFA-5.6	ECUNIAL
7	SFA-5.6	ECuMnNiAl
7	SFA-5.7	ERCUNIAL
,	SFA-5.7	ERCLMONIA
	Nickel and Nickel Alloys	5
	SFA-5.11	Pait -
		ENI-1
	SFA-5.14 SFA-5.30	ERNH1 IN61
1	SFA-5.11	ENiCu-7
	SFA-5.14	ERNICu-7
	SFA-5.14	ERNICu-8
	SFA-5.30	IN60

### QW-432 (CONT'D) F-NUMBERS

مهتدس نينا هنرمنديان.

## کروہ مہندسین ہیں الطلی خوش ایران/ ۱۳۷۹ حة جاب ، نکنہ ، محفظ ، مثلة به شرکت کاءنہ همانہ بر باشد

ضمیمه ۶

دوره اموزشی



كروه مهندسين بين العللي جوش ايران

آشنایی با تست و دستو *ر*العمل جو شکاری



شرکت کاوش همایش

### WELDING DATA

QW-432

دوره اموزشی

### QW-432 (CONT'D) F-NUMBERS

Grouping of Electrodes and Welding Rods for Qualification

F-No.	ASME Specification	AWS Classification
	Nickel and Nickel Alloys (c	cont'd)
43	SFA-5.11	ENiCrFe-1
43	SFA-5.11	ENICrFe-2
43	SFA-5.11	ENICrFe-3
43	SFA-5.11	ENICrFe-4
43	SFA-5.11	EdiorFe-7
43	SFA-5.11	ENiCrFe-9
43	SFA-5.11	ENiCrFe-10
43	SFA-5.11	ENiCrMo-2
43	SFA-5.11	ENICrMo-3
43	\$FA-5.11	ENICrMo-6
43	\$FA-5.11	ENICrMo-12
43	\$FA-5.11	ENICrCoMo-1
43	SFA-5.14	ERNICr-3
43	SFA-5.14	ERNICr-4
43	SFA-5.14	ERNiCr-6
43	SFA-5.14	ERNICrFe-5
43	SFA-5.14	ERNICrFe-6
43	SFA-5.14	ERNiCrFe-7
43	SFA-5.14	ERNICrFe-B
43	SFA-5.14	ERNiCrFe-11
43	SFA-5.14	ERNICrCoMo-1
43	SFA-5.14	ERNiCrMo-2
43	SFA-5.14	ERNICrMo-3
43	SFA-5.30	INGA
43	SFA-5.30	IN62
43	SFA-5.30	1N82
44	SFA-5.11	ENiMo-1
44	SFA-5.11	ENIMo-3
44	SFA-5.11	ENiMo-7
14	SFA-5.11	ENIMO-8
14	SFA-5.11	ENIMo-9
14	SFA-5.11	ENIMO-10
14	SFA-5.11	ENICrMo-4
44	SFA-5.11	ENICrMo-5
44	SFA-5.11	ENiCrMo-7
44	SFA-5.11	EMICrMo-10
14	SFA-5.11	ENICrMo-13
14	SFA-5.11	ENICrMo-14
14	SFA-5.14	ERNIMO-1
14	SFA-5.14	ERNIMO-2
14	SFA-5.14	ERNIMO-3
14	SFA-5.14	ERNIMO-7 (B2)
4	SFA-5.14	ERNIMO-8
4	SFA-5.14	ERNIMo-9 ERNIMo-10
4	SFA-5.14	ERNIC-10 ERNIC-Mo-4
4	SFA-5.14	ERNICIMO-4 ERNICIMO-7 (Alloy C4)
4	SFA-5.14	ERNICIMO-7 (Alloy C4)
14 · · ·	SFA-5.14	ERNICIMO-10 ERNICIMO-13
4	SFA-5.14	ERNICIMO-13 ERNICIMO-14
4	SFA-5.14	ERNICIMO-14 ERNICIWMO-1
4	SFA-5.14	CKUICLAA WO-T
5	SFA-5.11	ENICrMo-1
		ENICrMo-9

گروه مهندسین بین الطائی خوش ایران/ ۱۳۷۹

2 (



دستو *ر*العمل جو شکاری



کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

### QW-432

### 1998 SECTION IX

### QW-432 (CONT'D) F-NUMBERS

F-No.	ASME Specification	AWS Classification
	Nickel and Nickel Alloy	s (cont'd)
45	SFA-5.11	ENICrMo-11
45	SFA-5.14	ERNICrMo-1
45	SFA-5.14	ERNICrMo-8
45	SFA-5.14	ERNICrMo-9
45	SFA-5.14	ERNICrMo-11
45	SFA-5.14	ERNiFeCr-1
	Titanium and Titanium	Alloys
51	SFA-5.16	ERTI-1
51	SFA-5.16	ERTI-2
51	SFA-5.16	ERTI-3
51	SFA-5.16	ERTI-4
52	SFA-5.16	ERTi-7
53	SFA-5.16	ERTI-9
53	SFA-5.16	ERTI-9ELI
54	SFA-5.16	ERTI-12
55	SFA-5.16	ERTI-5
55	SFA-5.16	ERTI-SELI
55	SFA-5.16	ERTI-6
55	SFA-5.16	ERTI-6ELI
55	SFA-5.16	ERTI-15
	Zirconium and Zirconium	Alloys
51	SFA-5.24	ERZr2
51	SFA-5.24	ERZr3
1	SFA-5.24	ERZr4
	Hard-Facing Weld Metal	Overlay
'1	SFA-5.13	All classifications
2	SFA-5.21	All classifications

ضمیمه ۶

مهندنى تيما هترمنديان

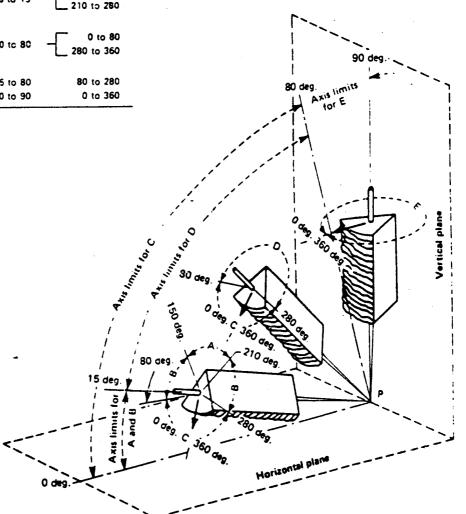
دوره اموزشی



دستورالعمل جوشکا*ر*ی



_____


کروہ مہندسین بین المللی جوش ایران

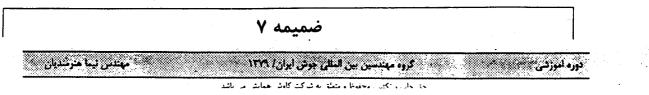
1998 SECTION IX

QW-460 GRAPHICS

QW-461 Positions

	Tabulation of	Positions of Wel	ds
Position	Diegram Reference	Inclination of Axis, deg.	Rotation of Face, deg
Flat	A	0 to 15	150 to 210
Horizontal	8	0 to 15	- 80 to 150 210 to 260
Overfiead	с	0 to 80	- 0 to 80 280 to 360
	D	15 to 80	80 to 280
Vertical	E	80 to 90	0 to 360




### GENERAL NOTE:

The horizontal reference plane is taken to lie always below the weld under consideration.

Inclination of axis is measured from the horizontal reference plane toward the vertical.

Angle of rotation of face is measured from a line perpendicular to the axis of the weld and lying in a vertical plane containing this axis. The reference position (0 deg.) of rotation of the face invariably points in the direction opposite to that in which the axis angle increases. The angle of rotation of the face of weld is measured in a clockwise direction from this reference position (0 deg.) when looking at point  $\rho$ 

### QW-461.1 POSITIONS OF WELDS - GROOVE WELDS



t-

QW-460

QW-461.1

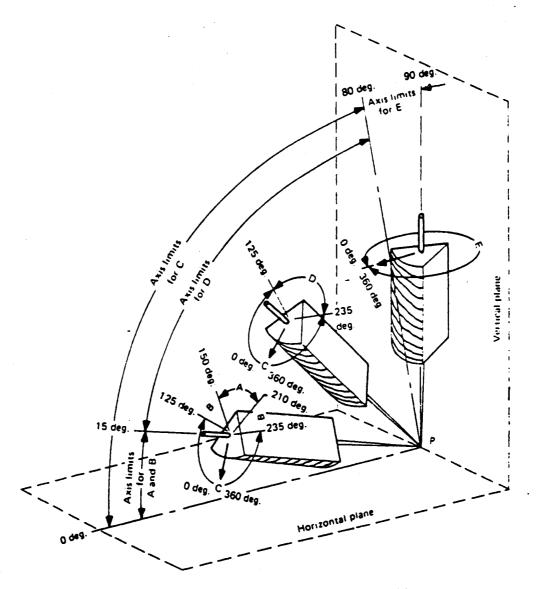


دستو *ر*العمل جو شکاری



کروہ مہندسین ہیں المللی جوش ایران

مهندنن ليما هنرمنديان


QW-461.2

0

 $\mathbf{C}$ 

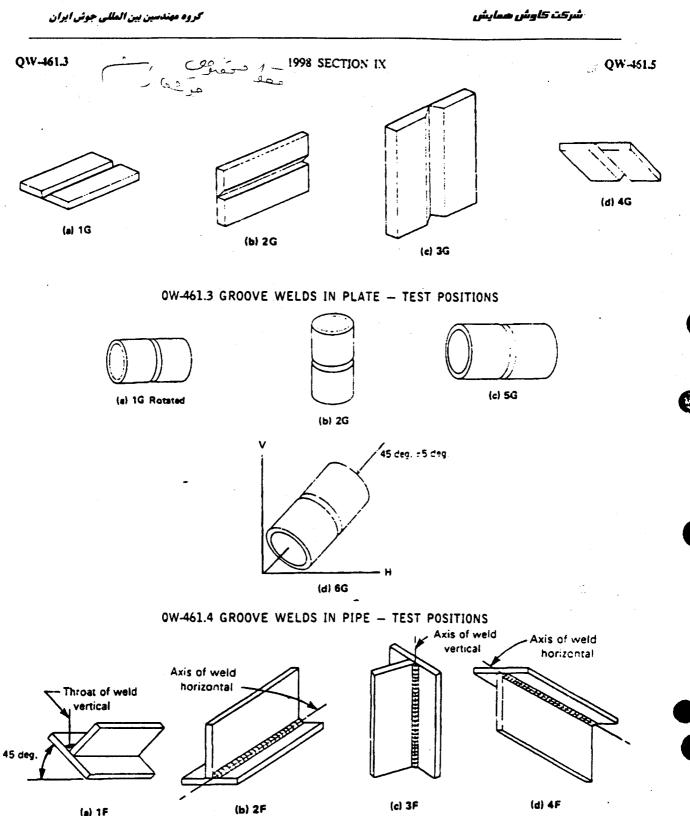
WELDING	DATA
---------	------

1	Tabulation of Po	sitions of Fillet V	Veids
Position	Diagram Reference	Inclination of Axis, deg.	Rotation of Face, deg
Flat	A	0 to 15	150 to 210
Horizontal		0 to 15	- 125 to 150 210 to 235
Overhead	с	0 to <b>80</b>	0 to 25
Vertical	D E	15 to 80 80 to 90	125 to 235 0 to 360



QW-461.2 POSITIONS OF WELDS - FILLET WELDS

كروة مهندسين بين المللي جوش ايران/ ١٣٧٩ <u>حا</u>ر


د ت

دوره اموزشی ،









QW-461.5 FILLET WELDS IN PLATE - TEST POSITIONS

ضمیمه ۷

(a) 1F

ين بين المللي جوش أيران/ ١٣٧٩ کروہ مہندے 3.15 - 5 S ....

أحدادا والواد

دوره اموزشي

Ċ

Ç

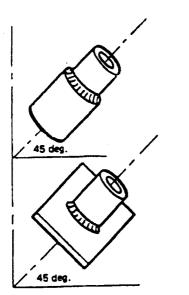


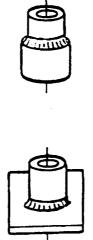
شرکت کاوش همایش

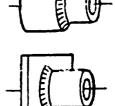
آشنایی با تست و

دستو *ر*العمل جو شکاری




کروہ مہندسین ہیں العللی جوش ایران


QW-461.6


E

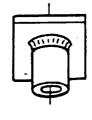
С,

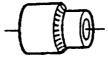
WELDING DATA







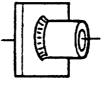

(a) 1F (Rotated)


ومهندس ليما هترمنديان

(b) **2F** 

(c) 2FR (Rotated)

دورة اموزشي 🕺








(d) 4F





(e) 5F

QW-461.6 FILLET WELDS IN PIPE - TEST POSITIONS

كروه مهندسين بين المللي جوش ايران/ ١٢٧٩

حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش مي باشد .



EN

1

(].

ξ.,

آشنایی با تست و دستورالعمل جوشکاری



شرکت کاوش همایش

كروه مهندسين بين المللي جوش ايران

STD.AWS D1.1-ENGL 1998 MM 0784265 0508493 560 MM

46/Prequalification of WPSs

υ υ							(0.5		
) ल (						Thickness o at Point (	Thickness of Thickest Part at Point of Welding	Minimum Preheat and Interpass Temperature	reheat an Mperatui
. MIG 1						!		•	
		Stee	Steel Specification	-	Welding Process	. <u></u>	E		ç
ASTM A36	<b>^</b> 36	a eperg	ASTM ASI6			1/8 to 3/4 incl.	3 to 19 incl.	- Nore	L
			ASIM ASZ4	Grades I & II				5	2
MICY		Crade B	ASTM A529			Over 3/4	Over 19		
ISIN WICK	ISIV	Grades A, B,	ASTM A570	All grades	Shielded metal are	that 1-10 incl	than 18 1 incl		;
A vert	061 4	CS. D. DS. E	ASTM A573	Grade 65	welding with other			<b>D</b> C1	8
SUA MICA	2017	Grade B	ASTM A709	Grade 36	than low-hydrogen	Over 1-1/2	Over 38 1		
IRCV WICK		Unde Y35	API SL	Grade B	electrodes	then 2.10 incl			
ASTM A300	200	Grade A		Grade X42				67	6
		Grade B	ABS	Grades A, B, D, CS, DS					
NSTM A501	<b>N501</b>			Grade E		0.000			
ASTM A36	A36		<b>ASTM AS70</b>	All grades		7/1-7 11-7	Over 03.3		2
ASTM AS3	<b>A</b> 53	Grade B	ASTM A572	Grades 42, 50					
ASTM A106	A106	Grade B	ASTM A573	Grade 65					
<b>ASTM AI3</b>	<b>A131</b>	Grades A, B,	ASTM A588						
		CS, D, DS, E	ASTM A595	Grades A. B. C					
		AH 32 & 36	ASTM A606	•		1/0 10 5/4 IUCI.	3 to 19 incl.	None	-
		DH 32 & 36	<b>ASTM A607</b>	Grades 45, 50, 55					
	1	EH 32 & 36	<b>ASTM A618</b>	Grades Ib, II, III					
ASTM A139	A139	Grade B	ASTM A633	Grudes A, B					
				Grades C, D	Shielded metal are	04-14			
ISCA MICA	1252	Grade Y35	<b>ASTM A709</b>	Grades 36, 50, 50W	welding with low-	then 1-10 incl	28 1 incl	;	:
			ASTM A710	Grade A, Class 2 (> 2 in.)	hydrogen alectrodea			<b>P</b>	2
4			ASTM A808		submerced arc				
			<b>ASTM A913</b>	Grade 50	weldine ² as metal				
ASIM A44			API 51.	Grade B	arc weldine flux				
ASTM AS00	A500	Grade A		Grade X42	corred arc welding				
		Grade B	API Spec. 2H	Grades 42, 50					
			API 2W	Grades 42, 50, 50T		7/1-1 BAO	UNEL 38.1 []NU		
			API 2Y	Grades 42, 50, 50T					
ASIM A301	201	1	ABS	Grades AH 32 & 36					
ASTM ASI6	216	Grades 55 & 60		DH 32 & 36		1341 7/1-7 nmn	.Ioni C.to	150	8
		65 & 70		EH 32 & 36					
ASTM AS24	<b>224</b>	Grades I & II	ABS	Grades A, B, D.					
ASTM A529				CS. DS			-		

فميمه ٨

• , •.







شرکت کاوش همایش

کروہ مہندسین ہین العللی جوش ایران

____

STD.AWS D1-1-ENGL 1998 MM 0784265 0508494 4T7 1

Prequalification of WPSs/4

٢

المراجع والمراجع المراجع المراجع

			Table 3.2 (Continued)				
				Thickness of at Point c	Thickness of Thickest Part at Point of Welding	Minimum Preheat and Interpass Temperature	reheat and mperature
90 C 1							
· >		Steel Specification	Welding Process	Ē	E L	: •	Ç,
				1/8 to 3/4 incl.	3 to 19 incl.	50	0
	ASTM A572 ASTM A633	Grades K0, 65 Grade E		Over 3/4 thru 1-1/2 jact	Over 19 thru 38 1 incl	5	÷
с С	ALTIN A9134	Girades 60, 65	clectrodes, submerged arc welding. ² gas metal				8
	01/A MTSA	<u>Grade A. Class 2 (52 in.)</u> Grade A. Class 3 (52 in.)	arc welding. Bux cored arc welding	Uver 1-1/2 thru 2-1/2 incl.	Over 38.1 thru 63.5 incl.	225	107
	<u>API 2W</u> API 2Y	Grade 60 Grade 60		0v <del>a</del> 2-1/2	Ov <del>er</del> 63.5	300	150
	ASTM A710	Grade A (All classes)	SMAW, SAW, GMAW, and FCAW with electrodes or electrode-flux combinations capable of				
<b>-</b>	716 WLSV	Grades 50, 60, 65	depusiting weld metal with a maximum diffusible hydrogen content of 8 mU100 g (H8), when tested according to ANSI/ ANS A4.3.		no preheat is required	lired	
	t: hen the base metal ter r modification of prel e 5.12.2 and 5.6 for a <u>e heat input limitatio</u>	Ninex: 1. When the base metal temperature is below 32°F (0°C), the base metal sha 2. For modification of preheat requirements for submerged arc welding with 3. See 5.12.2 and 5.6 for anhient and base-metal temperature requirements. 4. The heat input limitations of 5.7 shall not apply to ASTM A913 Grade 60	Nites: 1. When the base metal temperature is below 32°F (0°C), the base metal shall be preheated to at least 70°F (21°C) and this minimum temperature maintained during welding. 2. For modification of preheat requirements for submerged arc welding with parallel or multiple electrodes, see 3.5.3. 3. See 5.12.2 and 5.6 for amhitent and base metal kemperature requirements. 4. The heat input limitations of 5.7 shall not apply to ASTM A913 Grade 60 or 65.	num temperature main	tained during welding.		

همهندس ليما مترمنديان

حة حاب و تكتب ، محفوظ و منعبة به شاكت كاوش همايش من باشيد

گرود مهندسین بین الطلی جوش ایران/ ۱۳۷۹

く ろ



دستو *ر*العمل جو شکا*ر*ی



شرکت کاوش همایش

کروہ مہندسین ہین المللی جوش ابران

**UCS-56** 

### 1998 SECTION VIII - DIVISION 1

UCS-56

TABLE UCS-56 POSTWELD HEAT TREATMENT REQUIREMENTS FOR CARBON AND

	ح مدر مع Normal Holding	ور چر کچ اصل	imum Holding Time at Normal for Nominal Thickness [See UV	
Material	ر در مولاد کر F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-No. 1 Gr. Nos. 1, 2, 3	1100	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over	2 hr plus 15 min for each addi- tional inch over
Gr. No. 4	NA PLICE ST	None	2 in. None	2 in. None

### NOTES:

- (1) Wher, it is impractical to postweld heat treat at the temperature specified in this Table, it is permissible to carry out the postweld heat treatment at lower temperatures for longer periods of time in accordance with Table UCS-56.1.
- (2) Postweld heat treatment is mandatory under the following conditions:
- (a) for welded joints over  $1\frac{1}{2}$  in nominal thickness
- (a) for welded joints over 1% in. nominal thickness through 1% in. nominal thickness unless preheat is applied at a minimum Temperature of 200°F during welding
- (c) for welded joints of all thicknesses if required by UW-2, except postweld heat treatment is not mandatory under the conditions specified below:
   (1) for groove welds not over ½ in. size and fillet welds with a throat not over ½ in. that attach nazzle connections that have a finished inside diameter not greater than 2 in., provided the connections do not form ligaments that require an increase in shell or head thickness, and preheat to a minimum temperature of 200°F is applied;
  - (2) for groove welds not over  $\frac{1}{2}$  in. in size or fillet welds with a throat thickness of  $\frac{1}{2}$  in. or less used for attaching nonpressure parts to pressure parts provided preheat to a minimum temperature of 200°F is applied when the thickness of the pressure part exceeds  $1\frac{1}{4}$  in.;
  - (3) for studs welded to pressure parts provided preheat to a minimum temperature of 200°F is applied when the thickness of the pressure part exceeds 1¼ in.;
  - (4) for corrosion resistant weld metal overly cladding or for welds attaching corrosion resistant applied lining (see UCL-34) provided preheat to a minimum temperature of 200°F is maintained during application of the first layer when the thickness of the pressure part exceeds 1¼ in.

NA = not applicable

be continuous. It may be an accumulation of time of multiple postweld heat treatment cycles.

(c) When pressure parts of two different P-Number groups are joined by welding, the postweld heat treatment shall be that specified in either of Tables UCS-56 or UHA-32, with applicable notes, for the material requiring the higher postweld temperature. When nonpressure parts are welded to pressure parts, the postweld heat treatment temperature of the pressure part shall control.

(d) The operation of postweld heat treatment shall be carried out by one of the procedures given in UW-40 in accordance with the following requirements.

(1) The temperature of the furnace shall not exceed  $8J0^{\circ}F$  (427°C) at the time the vessel or part is placed in it.

(2) Above 800°F (427°C), the rate³ of heating shall be not more than 400°F/hr (200°C/hr) divided by the maximum metal thickness of the shell or head plate in inches, but in no case more than  $400^{\circ}$ F/hr (222°C/hr). During the heating period there shall not be a greater variation in temperature throughout the portion of the vessel being heated than 250°F (139°C) within any 15 ft (4.6 m) interval of length.

(3) The vessel or vessel part shall be held at or above the temperature specified in Table UCS-56 or Table UCS-56.1 for the period of time specified in the Tables. During the holding period, there shall not be a greater difference than 150°F (83°C) between the highest and lowest temperature throughout the portion of the vessel being heated, except where the range is further limited in Table UCS-56.

(4) During the heating and holding periods, the furnace atmosphere shall be so controlled as to avoid excessive oxidation of the surface of the vessel. The furnace shall be of such design as to prevent direct impingement of the flume on the vessel.

structures may indicate reduced rates of heating and cooling to avoid structural damage due to excessive thermal gradients.

ضمیمه ۹ دوره لموزش ۲۰۰۰ کروه مهندسین بین النالی بوش ایران/ ۱۳۲۱ دوره لموزش

³The rates of heating and cooling need not be less than 100°F/hr. However, in all cases consideration of closed chambers and complex



*لروه مهندسین بین المللی جوش ایران* 

آشنایی با تست و





شرکت کاوش همایش

UCS-56

### PART UCS - CARBON AND LOW STEEL ALLOY VESSELS

S-56

### TABLE UCS-56 (CONT'D) POSTWELD HEAT TREATMENT REQUIREMENTS FOR CARBON AND LOW ALLOY STEELS

	Normal Holding		mum Holding Time at Normal for Nominal Thickness [See U\	
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over in.
P-No. 3 Gr. Nos. 1, 2, 3	1100	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plu: 15 min for each addi- tional och over 2 in.

### NOTES:

- (1) When it is impractical to postweld heat treat at the temperatures specified in this Table, it is permissible to carry out the postweld heat treatment at lower temperatures for longer periods of time in accordance with Table UCS-56.1.
- (2) Postweld heat treatment is mandatory on P-No. 3 Gr. No. 3 material in all thicknesses.
- (3) Except for the exemptions in Note (4), postweld heat treatment is mandatory under the following conditions:
  - (a) on P-No. 3 Gr. No. 1 and P-No. 3 Gr. No. 2 over 3 in. nominal thickness. For these materials, postweld heat treatment is mandatory on material up to and including 3 in. nominal thickness unless a welding procedure qualification described in UCS-56(a) has been made in equal or greater thickness than the production weld.
  - (b) on material in all thicknesses if required by UW-2.
- (4) For welding connections and attachments to pressure parts, postweld heat treatment is not mandatory under the conditions specified below: (a) for attaching to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) or nonpressure parts with groove welds not over ½ In. in size or fillet welds that have a throat thickness of ½ in. or less, provided preheat to a minimum temperature of 200°F is applied
  - (b) for circumferential butt welds in pipe or tube where the pipe or tube have both a nominal wall thickness of ½ in. or less and a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits)
  - (c) for study welded to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) provided preheat to a minimum temperature of 200°F is applied
  - (d) for corrosion resistant weld metal overlay cladding or for welds attaching corrosion resistant applied lining (see UCL-34) when welded to pressure parts which have a specified maximum carbon content of not more than 0.25% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits) provided preheat to a minimum temperature of 200°F is maintained during application of the first layer.

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

حة جاب و تكتب ، محفوظ و متعلق به شركت كاهش همانش م

(5) Above 800°F (427°C), cooling shall be done in a closed furnace or cooling chamber at a rate³not greater than 500°F/hr divided by the maximum metal thickness of the shell or head plate in inches, but in no case more than 500°F/hr (278°C). From 800°F (427°C) the vessel may be cooled in still air.

(e) Except as permitted in (f) below, vessels or parts of vessels that have been postweld heat treated in accordance with the requirements of this paragraph shall again be postweld heat treated after welded repairs have been made.

(f) Weld repairs to P-No. 1 Group Nos. 1, 2, and 3 materials and to P-No. 3 Group Nos. 1, 2, and 3 materials and to the weld metals used to join these materials may be made after the final PWHT but prior to the final hydrostatic test, without additional PWHT, provided that PWHT is not required as a service requirement in accordance with UW-2(a), except for the exemptions in Table UCS-56, or as a service

مهندس ليما هترمنديلن

requirement in accordance with UCS-68. The welded repairs shall meet the requirements of (!) through (6) below. These requirements do not apply when the welded repairs are minor restorations of the material surface, such as those required after removal of construction fixtures, and provided that the surface is not exposed to the vessel contents.

(1) The Manufacturer shall give prior notification of the repair to the user or to his designated agent and shall not proceed until acceptance has been obtained. Such repairs shall be recorded on the Data Report.

(2) The total repair depth shall not exceed  $1\frac{1}{2}$  in. (38 mm) for P-No. 1 Group Nos. 1, 2, and 3 materials and  $\frac{5}{8}$  in. (16 mm) for P-No. 3 Group Nos. 1, 2, and 3 materials. The total depth of a weld repair shall be taken as the sum of the depths for repairs made from both sides of a weld at a given location.

(3) After removal of the defect, the groove shall be examined, using either the magnetic particle or the

وره أموزشي











شرکت کاوش ہ

کروہ مہندسین بین المللی جوش ایران

Table UCS-56

### 1998 SECTION VIII - DIVISION 1

# TABLE UCS-56 (CONT'D) POSTWELD HEAT TREATMENT-REQUIREMENTS FOR CARBON AND

	Normal Holding		Minimum Holding Time at Normal Temperature for Nominal Thickness [See UW-40(f)]	
Material	Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in
P-No. 4 Gr. Nos. 1, 2	1109	1 hr/in., 15 min minimum	1 hr/in.	5 hr plus 15 min for each addi- tional inch over 5 in.

NOTES:

(1) Except for exemptions in Note (2), postweld heat treatment is mandatory under the following conditions:

(a) on material of SA-202 Grades A and B over 3/4 in. nominal thickness. For these materials postweld heat treatment is mandatory up to and including 3/4 in. nominal thickness a welding procedure qualification described in UCS-56(a) has been made in equal or greater thickness than the production weld.

(b) on material of all thicknesses if required by UW-2

(c) on all other P-No. 4 Gr. Nos. 1 and 2 materials.

- (2) Postweld heat treatment is not mandatory under the conditions specified below:
  - (a) for circumferential butt welds in pipe or tube of P-No. 4 materials where the pipe or tubes comply with all of the following conditions: (1) a maximum nominal outside diameter of 4 in.;
    - (2) a maximum nominal thickness of  $\frac{3}{2}$  in.;
    - (3) a maximum specified carbon content of not more than 0.15% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits);

(4) a minimum preneat of 250°F.

(b) for P-No. 4 pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), and (2)(a)(3) above, having nonpressure attachments filtet welded to them provided:

(1) the fillet welds have a maximum throat thickness of  $\frac{1}{2}$  in.;

(2) a minimum preheat temperature of 250°F is applied.

(c) for P-No. 4 pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), and (2)(a)(3) above, having studies welded to them, a minimum preheat temperature of 250°F is applied.

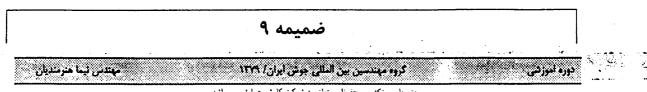
	Normal Holding		mum Holding Time at Normal for Nominal Thickness [See UV	•
- Material	Temperature, °F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.
P-Nos. 5A, 5B Gr. No. 1, and 5C Gr. No. 1	1250	1 hr/in., 15 min minimum	1 hr/in.	5 hr plus 15 min for each addi- tional inch over 5 in.
P-No. 58 Gr. No. 2	1300			

### NOTES:

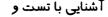
(1) Except for exemptions in Note (2), postweld heat treatment is manoatory under all conditions.

(2) Postweid heat treatment is not mandatory under the following conditions:

(a) for circumferential butt welds in pipe or tube where the pipe or tubes comply with all of the following conditions:


- (1) a maximum specified chromium content of 3.00%;
- (2) a maximum nominal outside diameter of 4 in.;-

(3) a maximum nominal thickness of  $\frac{1}{2}$  in.;


 (4) a maximum specified carbon content of not more than 0.15% (SA material specification carbon content, except when further limited by the purchaser to a value within the specification limits);

(5) a minimum preheat of 300°F is applied.

- (b) for pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), (2)(a)(3), and (2)(a)(4) having nonpressure attachments fillet welded to them provided:
  - (1) the fillet welds have a maximum throat thickness of  $\frac{1}{2}$  in.;
  - (2) a minimum preheat temperature of 300°F is applied.
- (c) for pipe or tube materials meeting the requirements of (2)(a)(1), (2)(a)(2), (2)(a)(3), and (2)(a)(4) having studs welded to them provided a minimum preheat temperature of 300°F is applied.
- (3) When it is impractical to postweld heat P-Nos. 5A, 5B Gr. No. 1, and 5C Gr. No. 1 materials at the temperature specified in this Table, it is permissible to perform the postweld heat treatment at 1200°F minimum provided that, for material up to 2 in. nominal thickness, the holding time is increased to the greater of 4 hr minimum or 4 hr/in. of thickness; for thickness over 2 in., the specified holding times are multiplied by 4. The requirements of UCS-85 must be accommodated in this reduction in postweld heat treatment.











شرکت کاوش هه

Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]

Over 2 in. to 5 in.

2 hr plus 15 min

for each addi-

tional inch over

کروہ مہندسین ہین العللی جوش ایران

### PART UHA - HIGH ALLOY STEEL VESSELS

Table 1 .iA-32

Over 5 in.

2 hr plus 15 min

for each addi-

tional inch over

### TABLE UHA-32 POSTWELD HEAT TREATMENT REQUIREMENTS FOR HIGH ALLOY STEELS

	Normal Holding Temperature,	Mini	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]				
Material	•F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.			
P-No. 6 Gr. Nos. 1, 2, 3	1250	1 hr/in., 15 min minimum	2 hr plus 15 min for each addi- tional inch over 2 in.	2 hr plus 15 min for each addi- tional inch over 2 in.			

### NOTES:

(1) Postweld heat treatment is not required for vessels constructed of Type 410 material for SA-182 Grade F6a, SA-240, SA-268, and SA-479 with carbon content not to exceed 0.08% and welded with electrodes that produce an austenitic chromium-nickel weld deposit or a non-air-hardening nickel-chromium-iron weld deposit, provided the plate thickness at the welded joint does not exceed 3/ in., and for thicknesses over ½ in. to 1½ in. provided a preheat of 450°F is maintained during welding and that the joints are completely radiographed. (2) Postweid heat treatment shall be performed as prescribed in UW-40 and UCS-56(e).



P-No. 7

Material

Gr. Nos. 1, 2

2 in 2 in. NOTES: (1) Postweld heat treatment is not required for vessels constructed of Type 405 or Type 410S materials for SA-240 and SA-268 with carbon content not to exceed 0.08%, welded with electrodes that produce an austenitic-chromium-nickel weld deposit or a non-air-hardening nickelchromium-iron weld deposit, provided the plate thickness at the welded joint does not exceed  $\frac{3}{2}$  in. and for thicknesses over  $\frac{3}{2}$  in. to  $1\frac{1}{2}$ 

minimum

Up to 2 in.

1 hr/in., 15 min

Normal Holding Temperature,

*F, Minimum

1350

- in, provided a preheat of 450°F is maintained during welding and that the joints are completely radiographed. (2) Postweld heat treatment shall be performed as prescribed in UW-40 and UCS-56(e) except that the cooling rate shall be a maximum of 100°F/hr in the range above 1200°F after which the cooling rate shall be sufficiently rapid to prevent embrittlement.
- (3) Postweld heat treatment is not required for vessels constructed of Grade TP XM-8 material for SA-268 and SA-479 or of Grade TP 18Cr-2Mo for SA-240 and SA-268.

*	Normal Holding Temperature,	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]					
Material	•F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.			
P-No. 8 Gr. Nos. 1, 2, 3, 4	•••	• • •	•••	•••			

### NOTE:

(1) Postweld heat treatment is neither required nor prohibited for joints between austenitic stainless steels of the P-No. 8 group. See nonmandatory Appendix HA, UHA-100 to UHA-108, inclusive.



آشنایی با تست و دستو *ر*العمل جو شکا*ر*ی



ىشر

شرکت کاور

کروہ مہندسین ہین العللی جوش ایران

Table UHA-32

### 1998 SECTION VIII - DIVISION 1

### TABLE UHA-32 (CONT'D)

### POSTWELD HEAT TREATMENT REQUIREMENTS FOR HIGH ALLOY STEELS

	Normal Holding Temperature,	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]				
Material	*F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.		
P-No 10E Gr. No. 1	1250	1 hr/in., 15 min minimum	1 br/in.	1 t.r/in.		

NOTES:

(1) For SA-268 Grade TP446 material only, postweld heat treatment shall be performed as prescribed in UW-40 and UCS-56(d) except that the cooling rate shall be a maximum of 100°F/hr in the range above 1200°F after which the cooling rate shall be sufficiently rapid to prevent embrittlement.

	Normal Holding Temperature,	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]				
Material	°F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.		
P-No. 10G Gr. No. 1		•••	•••	•••		

NOTE:

(1) Postweld heat treatment is neither required nor prohibited.

	•	Normal Holding	Minimum Holding Time at Normal Temperature for Nominal Thickness [See UHA-32(d)]					
•	Material	- Temperature, *F, Minimum	Up to 2 in.	Over 2 in. to 5 in.	Over 5 in.			
P-N	o. 10H			• • •				
G	r. No. 1	•						

NOTE:

(1) For the austenitic-ferritic wrought or cast duplex stainless steels listed below, postweld heat treatment is neither required nor prohibited, but any heat treatment applied shall be performed as listed below and followed by liquid quenching or rapid cooling by other means:

Alloy	Postweld Heat Treatment Temperature, *F
\$32550	1900-2050
\$31260 and \$31803	1870-2010
\$32900 (0.08 max. C)	1725-1750
\$31200	1900-2000
\$31500	1785-1875
\$32304	1740-1920
J93345	2050 minimum
S32750	1800-2060
\$32950	1825-1875

ضميمه

مهتدس ليما هترمنديان

گروه مهندسین بین الطلی جوش ایران/ ۱۳۷۹

دوره اموزشی









کروہ مہندسین ہین العللی جوش ایران

شرکت کاوش همایش

# GAS TUNGSTEN ARC WELDING

Table 3.4

Recommended Types of Current, Tungsten Electrodes and Shielding Gases for Welding Different Metals

26:26	Type of Metal	Thickness	Type of Current	Electrode*	Shielding Gas
			Alternating current	Pure or zirconium	Argon or argon-helium
		over 1/8 in.	DÇËN	Thurstad	Argon-helium or argon
		under 1/8 in.	OCEP	Thoriated or zirconium	Argon .
Conner come	er alloys	All	DCEN	Thonated	Heium
copper, coppe		under 1/8 in.	Alternating current	Pure or preonium	Argun
Maccesium al	loys		Alternating current	Pura cr zecomon	Argan
4 Miles # 2010-1		under 1/8 in.	DCEP	Zirconium or thoristed	Aroun
winted nickel	aloys		DCEN	Thoriated	Argen
Nain cathan	low-ailoy stasis	Ali	DCEN	- Une Thoracad	Argon or argon-helium
cay ton		under 1/8 ist.	Alternating current	Pure or zirconium	Argon
Stainlass staal		Ali	DCĚN	Thoristed	Argon or argon-heisam
	•••••••••	under 1/8 in.	Alternating current	Pure or zirconium	Argon
Titanium		All	DCEN	Thoristed	Argon

* Where thoristed electrodes are recommended, ceristed or lanthanated electrodes may also be used.

ضميمه ١٠

مهندس ثيما هنرمنديان 📉

گروه مهندسین بین الطلی جوش ایران/ ۱۲۷۹ حق جاب و تکتر ، محفوظ و متلز به شرکت کاوش همایش می باشد

دوره لموزشي





٠....



شرکت کاوش همایش

كروه مهندسين بين العللي جوش ايران

# MIGLMAG

GAS METAL ARC WELDING

Material Thickness			Line Wire		Current Voltage ¹		Wire Food Speed		$\sim$	Gas Flow	
<b>ia.</b>		Type of Weld	<u> </u>			veits	IPN \	<b>mm/s</b>	Shielding Gas ²	CFH	LPN
.062	1.6	Butt ³	.035	0.9	95	18	150	64	Ar 75%, CO2 -25%	25	12
125	3.2	Butt ³	.035	0.9	140	20	250	106	Ar 75%, CDz 25%	25	12
187	4.7	Butt ³	.035	0.9	150	20	285	112	Ar 75%, CDz 25%	25	12
250	8.4	Butt ³	.035	0.9	150	21	285	112	Ar 75%, 002 25%	25	
250	6.4	Butt ⁴	.045	3.1	290	22	250	106	Ar 75%, COz -25%	25 25	12 12

1. Direct current electrode positive.

2. Weiding grade CO2 may size be used.

3. Root opuning of .03 in. (0.8 mm).

4. Root opening of .082 in. (1.8 mm).

Thic	fatarial Lickness		Wire Current Diameter Voltage*			Wire Food Speed		Shielding	Gas Flow		
<b>in.</b>		Type of Weld	in.		amps	voits	IPM	ana/s	Gas	CFH	LPN
.062	1.6	Butt	.030	0.8	90	18	365	155	Argon	30	14
.125	3.2	Butt	.030	0.8	125	20	440	186	Argon	30	14
.187	4.8	Butt	.045	1.1	180	23	275	116	Argan	35	18
250	· <b>6.4</b>	Butt	.045	1.1	205	24	335	142	Argon	35	16
.375	9.5	Butt	.063	1.8	240	28	215	91	Argen	35 40	19

Direct current electrode positive.

Table 4.10 Typical Conditions for Gas Metal Arc Welding of Austenitic Stainless Steel Using a Spray Arc in the Flat Position

Material Thickness			Wire Diameter			Current V Voltaga ¹		Feed Feed		Gas Flow	
<u>h.</u>		Type of Weld	in.	814D	amps	valts	IPM		Shielding Gas	CFH	LPM
.125	3.2	Butt Joint with Backing	.062	1.8	225	24	130 .	55	Ar 98%, 02 2%	30	14
.250(1)	8.4	V-Butt Joint 60ø Inc. Angle	.082	1.6	275	28 °	175	74	Ar 98%, 0z 2%	35	16
.375(1)	9.5	V-Butt Joint 80# Inc. Age	· .082	1.6	300	28	240	102	Ar 98%, 3g 2%	35	

1. Direct current electrode positive.

2. Two passes required.

ضميمه ١٠

مهندس ليما هترمنديان

كروه مهندسين بين المللي جوش ايران/ ١٢٧٩ جة جار ٢٠٠٠ . . محفظ ، متعلة به شاكت كامش همانش ما باشد

دوره اموزشی

*¶* ∼,

دستو*ر*العمل جوشکا*ر*ی



شرکت کاوش همایش

•

GAS METAL ARC WELDING

کروہ مہندسین ہیں العللی جوش ایران

	Table 4.11	· · · · · ·	•
Typical Conditions for Gas Metal Arc	Welding of Austonitie	c Stainless Stee	l Using a Short

Meterial Thickness				ire 19tor	Cur Volt	rent age*		a Feed peed		ßes	Flow
ia.		Type of Weld	<u>ia.</u>	1081	amps	velts	IPM	mm/s	Shielding Gas	CFH	LPM
.082	1.6	Butt Joint	.030	0.8	85	21	185	78	He 90%, Ar 7.5% CO2 2.5%	30	14
.093	2.4	Butt Joint	.030	0.8	105	23	230	97	He 90%, Ar 7.5% COz 2.5%	30	14
.125	3.2	Butt Joint	.030	0.8	125	24	280	118	He 90%, Ar 7.5% COz 2.5%	30	14

* Direct current electrode positive.

1. 1

	Typi arial unass		W Dian	ire	Cur Volti	rent	-	e Feed peed	Shielding	Gae	Flow
in.	am	Type of Weld	ia.	៣៣	Amps	voltz	IPM	<b>M</b> AD/S	Gas	CFH	LPM
.125	3.2	Butt	.035		175	23	430	182	Argon	25	12
.187	4.8	Butt	.045		210	25	240	101	Argon	30	14
.250	8.4	Butt, Spaced	.062		385	28	240	101	Amon	35	18

· Direct current electrode positive.

		<u>``</u>		*	
	 	Table 4	1.13		

Material Thickness			Wire D	liaineter	Current	Voltage*	Wira F	ed Speed	Amo	a Flow
ia.	۹.C	Type of Weld	in.	an	amps	volts	IPM	som/s	CFH	LPM
.062	1.6	Square Groove or Fillet	.082	1.8	70	16	160	68	50	24
.090	2.3	Square Groove or Fillet	.082	1.8	105	17	245	104	50	24
.125	3.2	Square Groove or Fillet	.062	1.6	125	18	290	123	50	24
250	8.4	Square Grocys or Fillet	.082	1.6	285	25	600	254	60	. 28
375	9.5	Separe Grocve or FEet	.094	2.4	335	26	370	157	80	28

* Direct current electrode positive.

مهندس ليما هترمنديان

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

دوره لموزشی

حق چاپ و تکلبا ، محفوظ و متعلق به شرکت کاوش همایش می باشد



شرکت کاوش همایش

کروہ مہندسین بین العللی جوش ایران

PROCEDURE QUALIFICATIONS

QW-253

Paragrap			VARIABLES PROCEDURE Shielded Metal-Arc ( مربو مربو Pall Brief of Variables	Essential		Nonessential
	.1	6	Groove design		طابع أياج سدتت	x
نرف QW-402	· · ·		Backing		JUGG PLAS CAN	x
Jointa	.10	ø	Root spacing ( Pening )		د زیر صفراست	Χ
	.11	±	Root spacing ( Pening ) (الله برامی نشته)) میکی (الله برامی نشته))			x
	.5	ø	Group Number		x	
	.6		T Limits impact		x	
- QW-403	.7		T/t Limits > 8 in.	x		
Base	.8	ø	T Qualified	X		
Metais	.9	Τ	t Pass > $\frac{1}{2}$ in.	x		
	.11	ø	P-No. qualified	x		
	.13	6	P-No. 5/9/10	x		
	.4	0	F-Number	x		
	.5	ø	A-Number	x		
	.6	ø	Diameter			
QW-404 Siller	.7	ø	Diam. > $\frac{1}{4}$ in.		x	
Metals	.12	6	AWS class.		×	
	.30	6	t	x	· · · · · · · · · · · · · · · · · · ·	
	.33	6	AWS class.			x
	1.1	+	Position			×
QW-405	.2	6	Position		x	
Positions	.3	ø	11 Vertical welding			- x
	1.1		Decrease > 100°F	x		
QW-406	.2	ø	Preheat maint.			×
Preheat	.3	-	Increase > 100°F (IP)		x	
	.1	6	PWHT	x		<del></del>
QW-407	.2	6	PWHT (T & T range)		x	
PWHT	.4		7 Limits	×		<u> </u>
	.1	>	Heat input		x	
QW-409 Electrical	.4	6	Current or polarity		×	X
Characteristics	.8	\$ \$	I & E range			X
	.0	 	String/weave			×
		<u>پ</u>	Method cleaning			×
2W-410	.5		Method back gouge			x
echnique	.6	<u></u>	Manual or automatic			<u> </u>
	.25	<i>ф</i>				^ 
	.26	±	Peening		I	<u> </u>

مهندس نيما هنرمنديان

دوره اموزشي

ıl/

Ċ









شرکت کاوش همایش

**(**, )

🗠 دوره اموزشی

کروہ مہندسین ہیں المللی جوش ایران

Est of Den Pacing of a 2

 $\mathcal{O}$ 

QW-253.1

1998 SECTION IX

### QW-253.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Shielded Metal-Arc (SMAW)

	T	Special Process Essential Variables						
Paragrach		Hardfacing Overlay (QW-216)	Corrosion-Resistant Overlay (QW-214)					
W-402	.16	< Finished t	< Finished t					
Joints	.20	ø P-Number	ø P-Number					
Base Metals	.23	φ T Qualified	ø TQualified					
QW-404	.12	ø AWS class.	d A-Number					
Filler	.37		Ø Dia. (1st layer)					
Metals	.38	$\phi$ Dia. (1st layer)						
QW-405	.4	+ Position	+ Position					
Positions QW-406	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass					
Preheat QW-407		φ PWHT	¢ PWHT					
PWHT		6 Current or polarity	Current or polarity					
QW-409 Electrical	Inc > 10% 1st layer		Inc. > 10% 1st layer					
Characteristics QW-410 Technique	.38	Multi- to single-layer	Multi- to single-layer					

< Decrease/less than - Deletion

مهتدس ليما هترمنديان 🔗

ین بین المللی هوش ایران/ ۱۳۷۹ کرو. مهند حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همانش می باشد آشنایی با تست و دستو *ر*العمل جو شکاری



کروہ مہندسین ہیں العللی جوش ایران

شرکت کاوش همایش

### PROCEDURE QUALIFICATIONS

QW-254

**N** 

دوره لموزشی^{ي نم} ال^{ورسی}

### QW-254 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

Paragraph	l		Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	6	Groove design	•		X
QW-402	4	-	Backing			X
Joints	.10	6	Root spacing			×
	.11	=	Retainers			X
	.5	ø	Group Number		×	
	.6		T Limits		x	
QW-403	.7		7/t Limits > 8 in.	X		
Base	.8	6	T Qualified	X		
Metals	.9	Γ	t Pass > $\frac{1}{2}$ in.	X		
	.11	0	P-No. qualified	X		
	.13	0	P-No. 5/9/10	X		
	.4	0	F-Number	x		
	.5	0	A-Number	X		
	.6	0	Diameter			x
	.9	6	Flux/wire class.	X		
	.10	ف	Alley flux	X		
QW-404 Filler Metals	.24	= \$	Supplemental	x		
	.27	6	Alloy elements	X		
	.29	ø	Flux designation			X
	.30	6	:	X		
	.33	ø	AWS class.			X
	.34	ø	Flux type	x		
	.35	ø	Flux/wire class.		x	X
	.36		Recrushed slag	x		
QW-405 Positions	.1	+	Position			x
	.1		Decrease > 100°F	X		
QW-406 Preheat	.2	ø	Preheat maint.			<u>x</u>
	.3		Increase > 100°F (IP)		<u>×</u>	
	.1	ø	PWHT	×		
W-407 WHT	.2	ø	PWHT (T & T range)		x	
·····	.4		7 Limits	λ		
W-409	.1	>	Heat input		x	
Electrical	.4	\$	Current or polarity		x	x
haracteristics	.8	6	I & E range		1	×

ضميمه ١١

·γ́

(

گروه مهندین بین الطلی خوش ایزان / ۱۳۷۹ ده حال و تکند ، محاط و شماه به شرکت کاوش هماش م باشد

مهندس ليما هترشذيان



آشنایی با تست و





شرکت کاوش همایش

کروہ مہندسین ہین المللی جوش ایران

QW-254

ς.

### 1998 SECTION IX

#### QW-254 (CONT'D) WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

Paragraph		Brief of Variables		Essential	Supplementary Essential	Nonessential
	.1	ø	String/weave			x
	.5	ø	Method cleaning			X
	.6	0	Method back gouge			x
	.7	ø	Oscillation			x
QW-410	.8	6	Tube-work distance			x
Technique	.9	ø	Muiti to single pass/side		×	X
	.10	0	Single to multi electrodes		×	X
	.15	ø	Electrode spacing		L	x
	.25	ø	Manual or automatic			x
	.26	±	Peening			X

Legend: - Deletion

+ Addition > Increase/greater than

< Decrease/less than

1 Uphill ← Forehand 1 Downhill

 $\rightarrow$  Backhand

ø Change

C

مهتدس ليما عترمنديان

حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش مي باشد







کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

#### PROCEDURE QUALIFICATIONS

QW-254.1

دوره اموزننی

#### QW-254.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Submerged-Arc Welding (SAW)

		Special Process Essential Variables				
Paragraph		Hardfacing Overlay (QW-216)	Corrosion-Resistant Overlay (QW-214)			
QW-402 Joints	.16	< Finished t	< Finished t			
QW-403 Base	.20	ø P-Number	ø P-Number			
Base Metais	.23	φ 7 Qualified	🆸 T Qualified			
	.12	ø AWS class.				
QW-404	.24	± Supplemental Ø	± Supplemental			
Filler	.27					
Metals	.37					
	.39	ø Nom. flux comp.	ø Nom. flux comp.			
QW-405 Positions	.4	+ Position	+ Position			
QW-406 - Preheat	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass			
QW-407 PWHT	.6	ø PWHT	ø PWHT			
QW-409 Electrical	.4	ø Current or polarity	<ul> <li>Current or polarity</li> </ul>			
Characteristics	.26	> Heat input more than 10%	> Heat input more than 10%			
	.38	φ Multi- to single-layer	<b>ø</b> Multi- to single-layer			
QW-410	.40		- Sup. device			
Technique	.5C	ø No. of elec.	No. of elec.			
	.51	= Oscillation	± Oscillation			

Legend: + Addition > Increase/greater than - Deletion < Decrease/less than

 
 Î
 Uphill
 ←
 Forehand

 ↓
 Downhill
 →
 Backhand
 ♦ Change

ضميمه ١١

مهندس نيما هترمنديان

ياني أو الأور والإخرارية. المتعادية الأور والموارية

كروه مهندسين بين السللي يتوفق ايران ( ١٢٧٩ -



ا شنایی با تست و



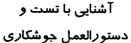


کروہ مہندسین بین العللی جوش ایران

شرکت کاوش همایش

QW-255

## 1998 SECTION IX


#### QW-255 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Metal-Arc Welding (GMAW and FCAW)

Paragraph	1		Brief of Variables	Essential	Supplementary Essential	Nonessential
	.1	ø	Groove design			x
QW-402	.4	-	Backing			X
Joints	.10	ø	Root spacing			×
	.11	=	Retainers			X
	.5	ø	Group Number		X	
	.6		7 Limits		X	
	.7		Tit Limits > 8 in.	x		
QW-403 Base	.8	6	T Qualified	X		
Metals	.9		t Pass > $\frac{1}{2}$ in.	X		
	.10		T Limits (S. Cir. Arc)	x		
	.11	ø	P-No. qualified	×		
	.13	ø	P-No. 5/9/10	x		
	.4	ø	F-Number	x		
	.5	ø	A-Number	x		
	.6	ø	Diameter			x
	.12	ø	AWS class.		X	
QW-404 Filler	.23	ø	Filler metal product form	X		
Metals	.24	= <del>0</del>	Supplemental	X		
	.27	ø	Alloy elements	X		
[	.30	ø	t	x		
	.32		t Limit (S. Cir. Arc)	X		
	.33	ø	AWS Class.			<u>×</u>
	.1	+	Position			x
2.V-405 Positions	.2	6	Position		X	
	.3	ø	T1 Vertical welding		•	<u>x</u>
	.1		Decrease > 100°F	x		
QW-406 Preheat	.2	ø	Preheat maint.			x
	.3		Increase > 100°F (IP)		x	
	.1	ø	PWHT	x		
2W-407	.2	6	PWHT (T & T range)		x	·
РМНТ -	4		7 Limits	I x I		

بوره اموزشی 🕻

િ

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد





کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

#### **PROCEDURE QUALIFICATIONS**

MIG. MAG

A99

QW-255

QW-255 (CONT'D) WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Metal-Arc Welding (GMAW and FCAW)

Paragraph	1		Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	=	Trail or ø comp.			X
	.2	0	Single, mixture, or %	X		
QW-408	.3		Flow rate			x
Gas	.5	=	or $\phi$ Backing flow			X
	.9	-	Backing or $\phi$ comp.	x		
	.10	ø	Shielding or trailing	x		
••••	.1	>	Heat input		x	
QW-409 Electrical	.2	ø	Transfer mode	X		
Characteristics	.4	ø	Current or polarity		x	x
	.8	ø	I & E range			x
	.1	ø	String/weave			X
	.3	ø	Orifice, cup, or nozzle size			X
	.5	ø	Method cleaning			X
	.6	ø	Method back gouge			X
2W-410	.7	0	Oscillation		-	x
Technique	.8	6	Tube-work distance			X
	.9	ø	Multi to single pass/side		x	X
	.10	ø	Single to multi electrodes		x	x
	.15	ø	Electrode spacing			x
	.25	ø	Manual or automatic			x
	.26	÷	Peening			x

Legend:

»». مهتدس نیما هنرمندیان

+ Addition > Increase/greater than T Uphill - Deletion < Decrease/less than ↓ Downhill

← Forehand -> Backhand

 $\phi$  Change

دوره لموزئنى

ضميمه ١١

Ç

Ę.

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩ 1. .. محديظ و متعلة به شاكت كاهش همانش ما باشد ...**:**:..



ا شنایی با تست و





کروہ مہندسین ہیں العللی جوش ایران

شرکت کاوش همایش

## QW-255.1 ,

#### 1998 SECTION DX

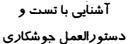
#### QW-255.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Metal-Arc Welding (GMAW and FCAW)

		Special Proc	ess Essential Variables
Paragraph		Hardfacing Cverlay (QW-216)	Corrosion-Resistant Overlay (QW-214)
QW-402 Joints	.16	< Finished t	< Finished t
QW-403 Base	.20	P-Number	ø P-Number
Metals	.23	$\phi$ T Qualified	Ø 7 Qualifies
	.12		
QW-404	.23	Filler metal     product form	
Filler Metals	.24	± Supplemental	± Supplementai φ
	.27	Alloy elements	
	.37		ø A-Number
QW-405 Positions	.4	+ Position	+ Position
QW-406 Preheat	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass
QW-407 PWHT	.6	ø PWHT	Ø PWHT
QW-408 Gas	.15	Type or flow rate	φ Type or flow rate
QW-409 Electrical	.4	<ul> <li>Current or polarity</li> </ul>	න් Current or polarity
Characteristics	.26	> Heat input more than 10%	> Heat input more than 10%
	.38	Multi- to single-layer	ø Multi- to sing e-layer
QW-410 Technique	.50		Ø No. of elec.
	.51	± Oscillation	± Oscillation

Legend:

+ Addition > Increase/greater than - Deletion < Decrease/less than

**1** Uphill ↓ Downhill


 $\leftarrow$  Forehand  $\phi$  Change -> Backhand

02

حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش مي باشد

مرجع المرجع ا /////W

0





کروہ مہندسین ہیں المللی جوئی ایران

شرکت کاوش همایش

#### PROCEDURE QUALIFICATIONS

QW-256

وروانورشی دروانورشی

#### QW-256 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

Paragraph	1	Brief of Variables	Essential	Supplementary Essential	Nonessentia
	.1	ø Groove design			x
⊇` <b>V-402</b>	.5	+ Backing			x
Joints	.10	Ø Root spacing			X
	.11	± Retainers			X
	.5	φ Group Number		x	
	.6	7 Limits		x	
QW-403 Base	.7	T/t Limits > 8 in.	X		
Metals	.8	ø 7 Qualified	X		
	.11	ø P-No. qualified	X		
	.13	φ P-No. 5/9/10	X		
	.3	ø Size			x
	.4	ø F-Number	x		
	.5	φ A-Number	x		
-	.12	ø AWS class.		×	
2W-404 Filler	.14	± Filler	x		
Metals	.22	± Consum. insert			X
	.23	Filler metal     product form	x		
	.30	ø t	X		
	.33	ø AWS class.			x
2W-405	.i	+ Position			x
ositions	.2	ø Position		×	
	.3	6 T1 Vertical welding			x
W-406	.1	Decrease > 100°F	×		
Preheat	.3	Increase > 100°F (IP)		×	
	.1	Ø PWHT	x		
W-407 WHT	.2	φ PWHT (T & T range)		x	
	.4	T Limits	x		
	.1	$\pm$ Trail or $\phi$ comp.			x
[	.2	φ Single, mixture, or %	x		
w.⊶oa [	.3	ø Flow rate			x
عه [	.5	± or φ Backing flow			x
	.9	- Backing or d comp.	x		
Γ	.10	Shielding or trailing	X		

£

Ć,

ضمیمه ۱۱

کروہ مہندسین بین السلی ہوئی ایوان/ ۱۳۷۹

مهتدس نيما هترمنديان

حة حاب ، تكثب ، محفوظ ، متعلق به شاكت كاهش همانش من باشد.



کروہ مہندسین ہیں المللی جوش ایران

ا شنایی با تست و





شرکت کاوش همایش

C

a carting on

دوره اموزئين

## QW-256

## 1998 SECTION IX

#### QW-256 (CONT'D) WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

Paragraph			Brief of Variables	Essential	Supplementary Essential	Nonessential
	1 > Heat input	Heat input		X		
QW-409	.3	=	Pulsing [			x
Electrical Characteristics	.4	0	Current or polarity		×	X
Characteristics	.8	6	I & E range			x
	.12	ø	Tungsten electrode			x
	.1	ø	String/weave			x
	.3	ø	Orifice, cup, or nozzle size			X
	.5	ø	Method cleaning			x
	.6	ø	Method back gouge			x
0W-410	.7	ø	Oscillation			X
Technique	.9	\$	Multi to single pass/ side		x	x
	.10	ø	Single to multi electrodes		x	x
	.11	ø	Closed to out chamber	x	_	
	.15	ø	Electrode spacing			x
	.25	6	Manual or automatic			x
	.26	=	Peening			x

Legend:

+ Addition > Increase/greater than - Deletion < Decrease/less than

 $\leftarrow$  Forehand 1 Upnill 1 Downhill -> Backhand

ø Change



آشنایی با تست و

دستو *ر*العمل جو شکاری



كروه مهندسين بين المللي جوش ايران

شرکت کاوش همایش

#### PROCEDURE QUALIFICATIONS

QW-256.1

#### QW-256.1 WELDING VARIABLES PROCEDURE SPECIFICATIONS (WPS) Gas Tungsten-Arc Welding (GTAW)

		Special Proce	ss Essential Variables
Faragraph		Hardfacing Overlay (QW-216)	Corrosion-Resistant Overtay (QW-214)
GV/-402 Joints	.16	< Finished t	< Finishea t
QW-403 525e	.20	ø P-Number	ø P-Number
Metals	.23	ø TQualified	Ø T Qualified
	.12	ø AWS class.	
QW-404	.14	= Filler	± Filler
Filler Metals	.23	Filler metal product form	Filler metal product form
	.37		ø A-Number
QW-405 Positions	.4	+ Position	+ Position
QW-406 Preheat	.4	Dec. > 100°F preheat > Interpass	Dec. > 100°F preheat > Interpass
QW-407 PWHT	.6	ø PWHT	Ø PWHT
QW-408 Gas	.15	ø Type or flow rate	Ø Type or flow rate
QW-409 Electrical	.4	Current or     polarity	Current or polarity
Characteristics	.26	> Heat input more than 10%	> Heat input more than 10%
W-410	.38	φ Multi- to single-layer	φ Multi- to single-layer
echnique	.50	φ No. of elec.	ø No. of ee:
	.51	= Oscillation	= Osculation

مهندس ليما هترمنديان

////1999

دوره اموزشی

ضميمه ١١

 $\left( \cdot \right)$ 

Ć

گرود مهندسین بین المللی جوش ایران *ا* ۱۳۷۹



كروه مهندسين بين العللي جوش ايران

ا شنایی با تست و





شرکت کاوش همایش

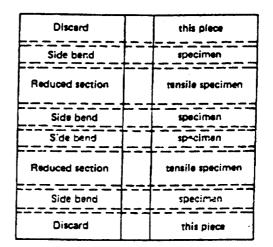
QW-463

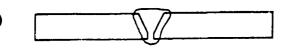
### WELDING DATA

QW-463.1(c)

0

€

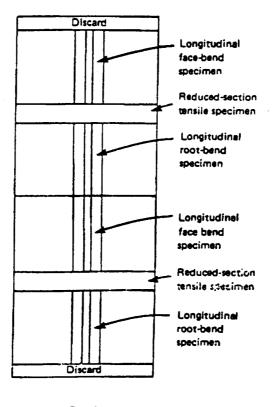




0r

QW-463

Order of Removal

. Discard	this piece				
Reduced section	tensile specimen				
Root bend	specimen				
Face bend	specimen				
Root bend	specimen				
Face bend	specimen				
Reduced section	tensile specimen				
Discard	this piece				






QW-463.1(a) PLATES — LESS THAN  $\frac{3}{4}$  in. THICKNESS PROCEDURE QUALIFICATION



QW-463.1(5) PLATES  $= \frac{3}{4}$  in. AND OVER THICKNESS AND ALTERNATE FROM  $\frac{3}{8}$  in. BUT LESS THAN  $\frac{3}{4}$  in. THICKNESS PROCEDURE QUALIFICATION





ضميمه ١٢

مهندس ليما هرمنديان



آشنایی با تست و



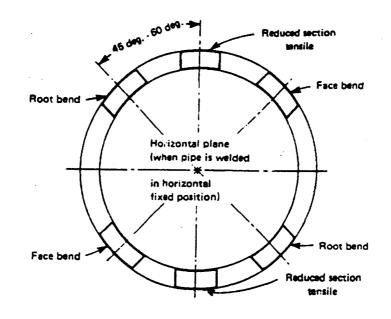


*کروہ مہندسین بین العللی جوش ایرا*ن

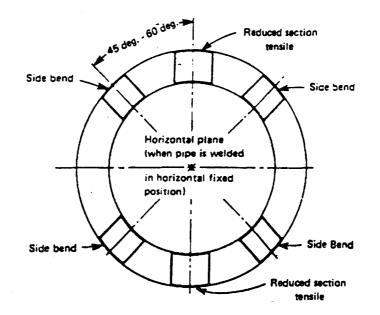
شرکت کاوش همایش

#### QW-463.1(d)

1998 SECTION IX


QW-463.1(e)

10


2.27

دوره اموزشی 🐂

1. 1*11 (1*996) **1**14



#### QW-463.1(d) PROCEDURE QUALIFICATION



## QW-463.1(e) PROCEDURE QUALIFICATION

كروه مهندسين بين المللي جوش ايران/ ١٣٣٩

مهتلاس ليما هترمنديان

٥ ٩

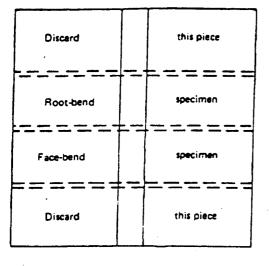
l ....

Ę.



کروہ مہندسین ہین المللی جوش ایران

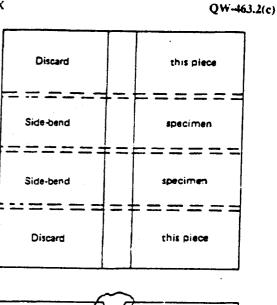
، سایی با نست و






شرکت کاوش همایش

••••


QW-463.2(a)



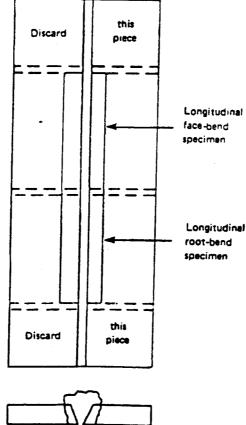


# QW-463.2(a) PLATES - LESS THAN $3_4$ in. THICRNESS PERFORMANCE QUALIFICATION

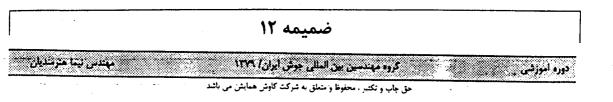
1998 SECTION IX






C

0


C

E

QW-463.2(b) PLATES - 3/4 in. AND OVER THICKNESS AND ALTERNATE FROM 3/3 in. BUT LESS THAN 3. IN THICKNESS PERFORMANCE QUALIFICATION



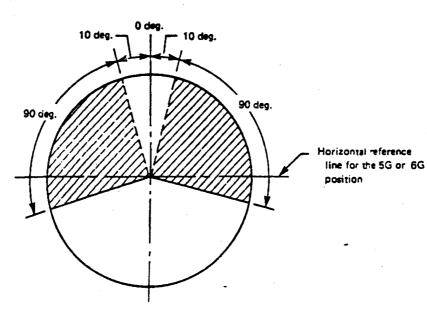
## QW-463.2(c) PLATES - LONGITUDINAL PERFORMANCE QUALIFICATION





کروہ مہندسین ہین المللی جوش ایران

آ شنایی با تست و


دستورالعمل جوشکاری



شرکت کاوش همایش

QW-463.1(f)

WELDING DATA



QW-463.1(f) NOTCH-TOUGHNESS TEST SPECIMEN LOCATION

حق حاب و تکثیر ، محفوظ و متعلّق به شرکت کاوش همایش می باشد

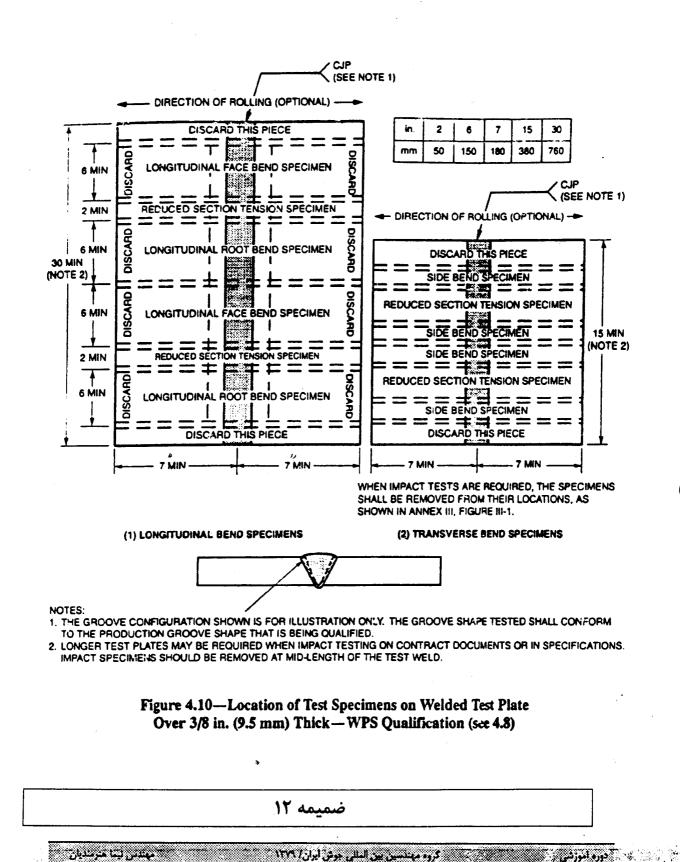
دوره إموزشي



شرکت کاوش همایش

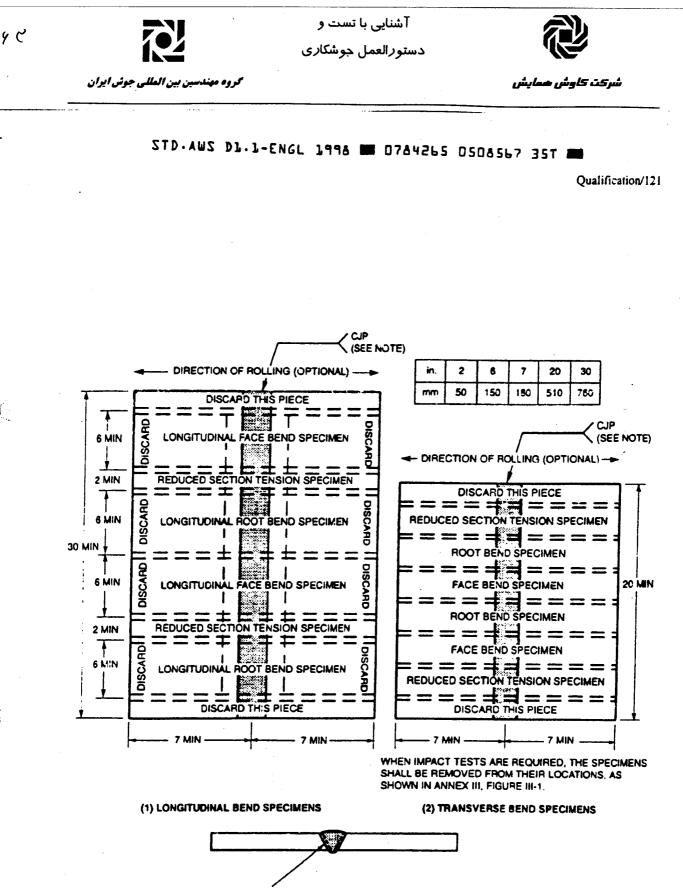


کروہ مہندسین ہیں العللی جوش ا ہران


STD.AWS D1.1-ENGL 1998 📰 0784265 0508566 413 (

ا شنایی با تست و

دستو *ر*العمل جو شکار ی


120/Qualification

4(



* مهتدس لينا هنرمنديان كروه مهندسين بين المللي جوش أيران/ ١٣٧٩

حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد



NOTE: THE GROOVE CONFIGURATION SHOWN IS FOR ILLUSTRATION ONLY. THE GROOVE SHAPE TESTED SHALL CONFORM TO THE PRODUCTION GROOVE SHAPE THAT IS BEING QUALIFIED.

Figure 4.11—Location of Test Specimens on Welded Test Plate 3/8 in. (9.5 mm) Thick and Under—WPS Qualification (see 4.8)

مهتدس ليما هترملذيان

**گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹** 





کروہ مہندسین ہیں المللی جوش ابران

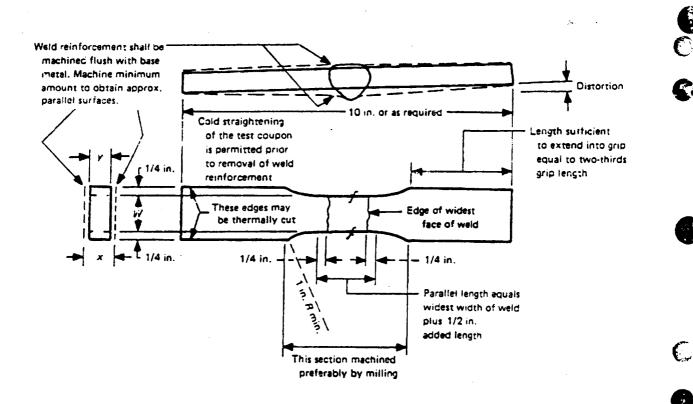
ا شنایی با تست و

دستو *ر*العمل جو شکاری

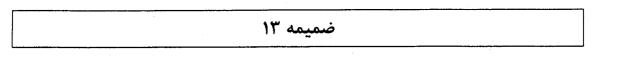
1998 SECTION IX



شرکت کاوش همایش


#### QW-462

#### **OW-462** Test Specimens


The purpose of the QW-462 figures is to give the manufacturer or contractor guidance in dimensioning test specimens for tests required for procedure and performance qualifications. Unless a minimum, maximum, or tolerance is given in the figures (or as QW-150, QW-160, or QW-180 requires), the dimensions

are to be considered approximate. All welding processes and filler material to be qualified must be included in the test specimen.

- x = coupon thickness including reinforcement
- y = specimen thickness
- T = coupon thickness excluding reinforcement
- W = specimen width.  $\frac{3}{4}$  in.



QW-462.1(a) TENSION - REDUCED SECTION - PLATE



🔿 مهندنن ليما هترمنديان

کروه مهندسین بین المللی خوش ایران/ ۱۳۷۹ حق جاب و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد

دوره اموزشی

OW-462.1(a)

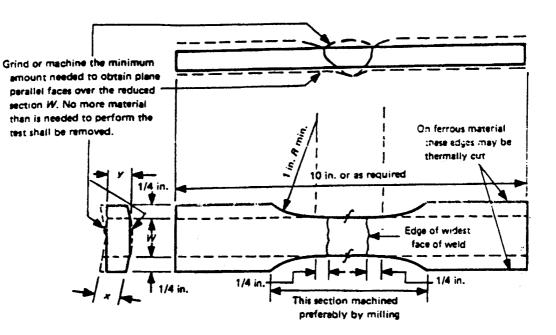


آشنایی با تست و

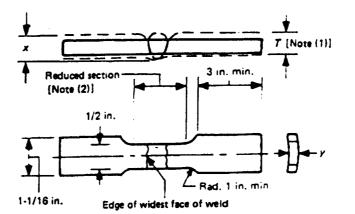
دستو *ر*العمل جو شکاری



شرکت کاوش همایش


کروہ مہندسین ہیں المللی جوش ایران

WELDING DATA


QW-462.1(c)

• •

دوره اموزنی



QW-462.1(b) TENSION - REDUCED SECTION - PIPE



#### NOTES:

مهندس نيما هترمنديان

- (1) The weld reinforcement shell be ground or machined so that the weld thickness does not exceed the base metal thickness 7. Machine minimum amount to obtain approximately parallel surfaces.
- (2) The reduced section shall not be less than the width of the weld plus 2y.

QW-462.1(c) TENSION - REDUCED SECTION ALTERNATE FOR PIPE

## QW-462.1(b)

40

**(**_.

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩



ا شنایی با تست و

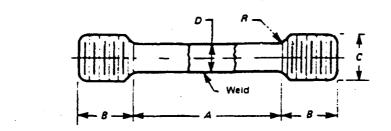




کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

QW-462.1(d)


1998 SECTION IX

QW-462.1(e)

ŝ

€

دوره اموزشی



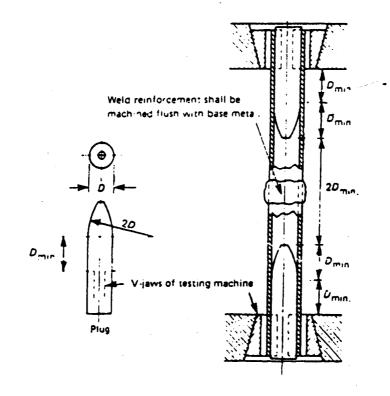
	Standard Dimensions, In.					
	(a) 0.505 Specimen	(b) 0.353 Specimen	(c) 0.252 Specimen	(d) 0.185 specimen		
A — Length of reduced section D — D ameter	(Note (1)) 0.500 =0.010	: Note (1)) 0.350 ±0.007	Note (1) 0 250 ±0.005	[Note (1)] 0.188 ±0.003		
R - Radius of fillet	3-8, min.	1+4, min. j	3 16, min.	1-8, min.		
B — Length of end section	1-3/8, approx.	1-1/8, approx.	7-8, approx.	1/2, approx.		
C - Diameter of end section	3.4	1/2	3:8	1.4		

GENERAL NOTES:

(a) Use maximum diameter specimen (a), (b), (c), or (d) that can be cut from the section.

(b) Weld should be in center of reduced section.

_


(c) Where only a single coupon is required the center of the specimen should be midway between the surfaces.

(d) The ends may be of any shape to fit the holders of the testing machine in such a way that the load is applied axial y

NOTE

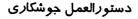
(1) Reduced section A should not beliess than width of weld plus  $2\mathcal{L}$ 

## QW-462.1(d) TENSION - REDUCED SECTION - TURNED SPECIMENS



QW-462.1(e) TENSION - FULL SECTION - SMALL DIAMETER PIPE

## ضميمه ١٣


کرود مهندسین بین المللی جوش ایران/ ۱۳۷۹

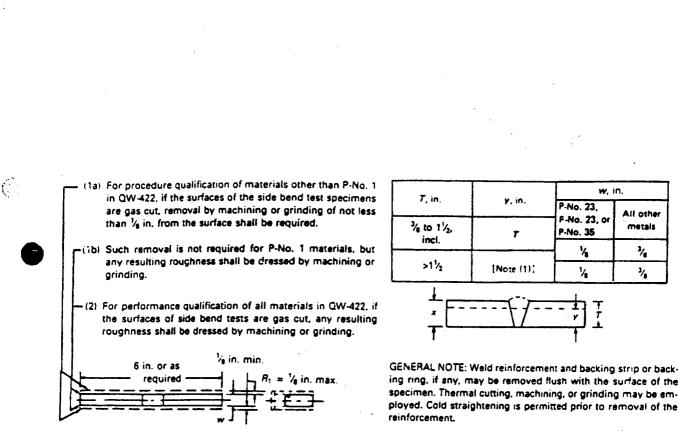
حق جاب و تكثير ، محفوظ و متعلق به شركت كاوش همايش من باشد





آشنایی با تست و






کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

WELDING DATA

QW 462.2



NOTE:

- When specimen thickness T exceeds 1½ in., use one of the following.
  - (a) Cut specimen into multiple test specimens y of approximately equal dimensions  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ .
    - y = tested specimen thickness when multiple specimens are taken from one coupon
  - (b) The specimen may be bent at full width. See requirements on jig width in QW-466.1.

QW-462.2 SIDE BEND

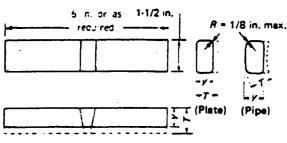
» مهندس نیما هنرمندیان »

کروه مهندسین بین المللی جوش ایران/ ۱۳۳۹ ده جاب و تکند ، محمط و منطق به ت کند کاوند هماند. مر باند

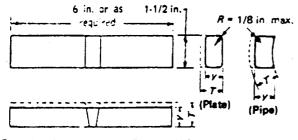




کروہ مہندسین بین المللی جوش ایران


ا شنایی با تست و






شرکت کاوش همایش

QW-462_3(a)



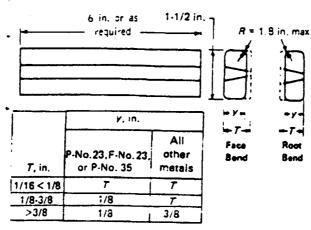
Face-bend specimen - Plate and Pipe





1998 SECTION IX

QW-462.3(b)


	y, in.	
<i>T</i> , in.	P-No.23, F-No. 23, or P-No. 35	All other metals
1/16 < 1/8	+T .	T
1/8-3/8	1/8	T T
>3/8	1/8	3/8

#### NOTES:

- (1) Weld reinforcement and backing strip or backing ring, if any, shall be removed flush with the surface of the specimen. If a recessed ring is used, this surface of the specimen may be machined to a depth not exceeding the depth of the recess to remove the ring, except that in such cases the thickness of the finished specimen shall be that specified above. Do not flame-cut nonferrous material.
- (2) If the pipe being tested is 4 in, nominal diameter or less, the width of the bend specimen may be 3/4 in, for pipe diameters 2 in. to and including 4 in. The bend specimen width may be 3/8 in, for pipe diameters less than 2 in, down to and including 3/8 in, and as an alternative, if the pipe being tested is equal to or less than 1 in, nominal pipe size (1.315 in, O. D.), the width of the bend specimens may be that obtained by cutting the pipe into quarter sections, less an elicwarce for saw cuts or machine cutting. These specimens cut into quarter sections are not required to have one surface machined flat as shown in QW-462.3(a). Send speciment taken from tubing of comparable sizes may be handled in a similar manner.

دوره اموزشی

#### QW-462.3(a) FACE AND ROOT BENDS - TRANSVERSE^{1,2}



NOTE:

(1) Weld reinforcements and backing strip or backing ring, if any, shall be removed essentially flush with the undisturbed surface of the base material. If a recessed strip is used, this surface of the specimen may be machined to a depth not exceeding the depth of the recess to remove the strip, except that in such cases the thickness of the finished specimen shall be that specified above.

#### QW-462.3(b) FACE AND ROOT BENDS -LONGITUDINAL¹

ضميمه ١٣

ا مهندين نيما هنرمنديان

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩

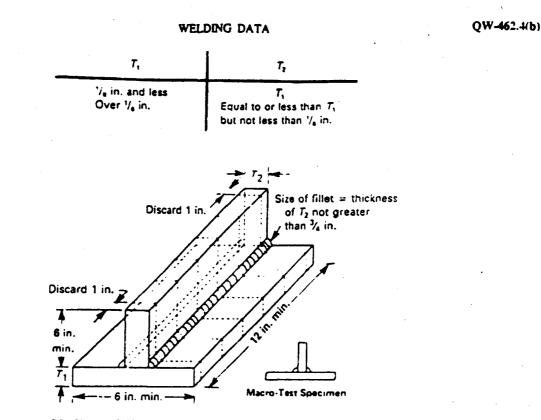




Ç.-

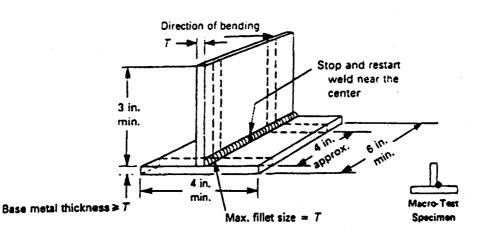


آشنایی با تست و


دستورالعمل جوشكارى



^مروه مهندسین بین المللی جوش ایران


QW-462.4(a)

شرکت کاوش همایش



GENERAL NOTE: Macro test — The fillet shall show fusion at the root of the weld but not necessarily beyond the root. The weld metal and heat affected zone shall be free of cracks.

QW-462.4(a) FILLET WELDS - PROCEDURE



GENERAL NOTE: Refer to QW-452.5 for T thickness/qualification ranges.

مهتدس ليما هترمنديان"

QW-462.4(b) FILLET WELDS - PERFORMANCE

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩

حة حاب و تكتب ، محفوظ و متعلة به شاكت كاوش همانش مرا باشد



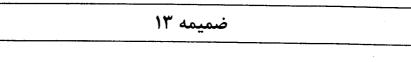
ا شنایی با تست و دستو *ر*العمل جو شکاری



كروه مهندسين بين المللي جوش ايران

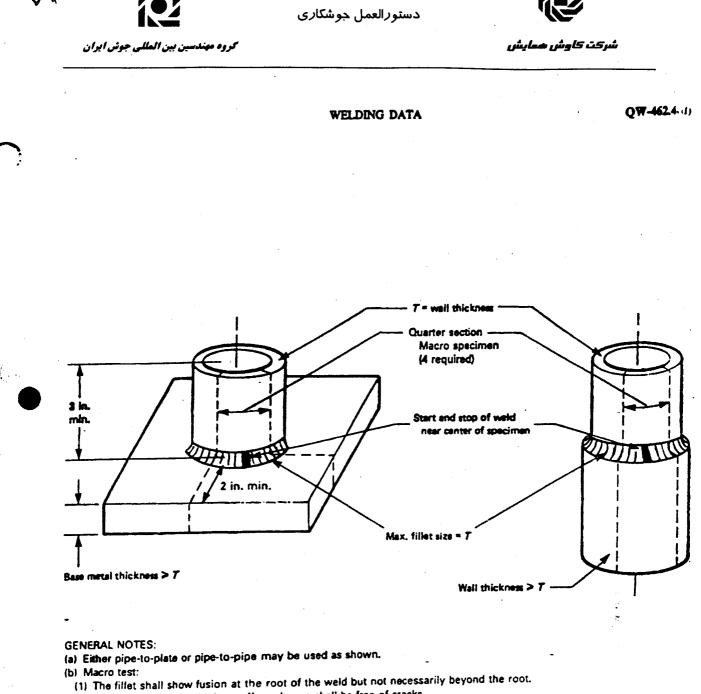
شرکت کاوش همایش

QW-462.4(c)


v.

1998 SECTION IX




GENERAL NOTE: Either pipe-to-plate or pipe-to-pipe may be used as shown.

#### QW-462.4(c) FILLET WELDS IN PIPE - PERFORMANCE



مهتدين تيما هنرمنديان •• كروه مهندسين بين المللي جوش ايران/١٢٧١

> و تکثیر ، محفوظ و متعلق به شرکت کاوش همایش می باشد حق جاب



آشنایی با تست و

(2) The weld metal and the heat affected zone shall be free of cracks.

## QW-462.4(d) FILLET WELDS IN PIPE - PROCEDURE

مهندس تيما هترمنديان

كروه مهندسين بين المللي جوش أيران/ ١٣٧٩

حق حاليا و تكثب ، محفوظ و متعلق به شاكت كاوش اهمات امر الله ا

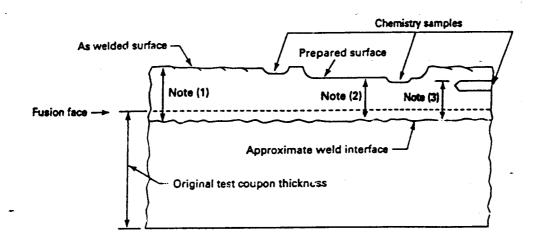




، سیایی با نست و دستو *ر*العمل جو شکا*ر*ی






0

ی، 🖯 دوره اموزشی

کروہ مہندسین ہیں المللی جوش ایران

OW-462.5(a)

1998 SECTION IX



#### NOTES:

A00

- (1) When a chemical analysis or hardness test is conducted on the as welded surface, the distance from the approximate weld interface to the final as welded surface shall become the minimum qualified overlay thickness. The chemical analysis may be performed directly on the as welded surface or on chips of material taken from the as welded surface.
- (2) When a chemical analysis or hardness test is conducted after material has been removed from the as welded surface, the distance from the approximate weld interface to the prepared surface shall become the minimum qualified overlay thickness. The chemical analysis may be made directly on the prepared surface or from chips removed from the prepared surface.
- (3) When a chemical analysis test is conducted on material removed by a horizontal drilled sample, the distance from the approximate weld interface to the uppermost side of the drilled cavity shall become the minimum qualified overlay thickness. The chemical analysis shall be performed on chips of material removed from the drilled cavity.

#### QW-462.5(a) CHEMICAL ANALYSIS AND HARDNESS SPECIMEN CORROSION-RESISTANT AND HARDFACING WELD METAL OVERLAY

ضمیمه ۱۳

مغتدس ليما هنرمنديان

گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹

حق جاب و تکشر . مجفوظ و متعلق به شرکت کاوش همانش می ناشد



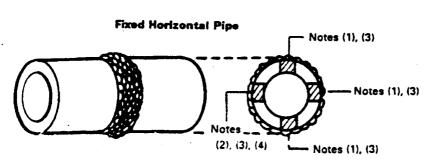
آ شنایی با تست و





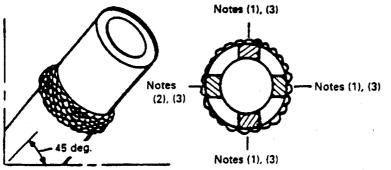
شرکت کاوش همایش

**Fixed Vertical and** 


Flat Rolled Pipe

Note (1)

OW-462.5(b)


کروہ مہندسین ہین المللی جوش ایران

WELDING DATA



Test Specimen Location for 5G Overlay Qualification (Specimens Required From a Minimum of Three Locations)

Fixed Pipe on 45 deg. Angle

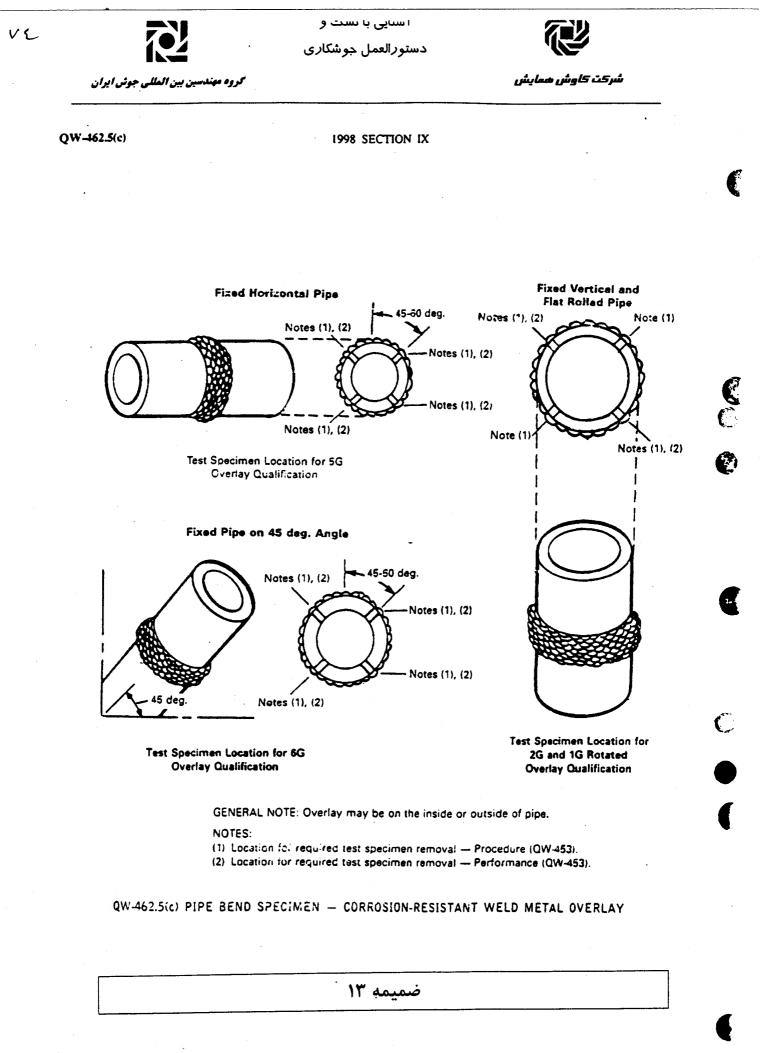


Test Specimen Location for 6G Overlay Qualification (Specimens Required From a Minimum of Three Locations)

Test Specimen Location for 2G and 1G Rotated Overlay Qualification (Specimens Required From One Location)

GENERAL NOTE: Overlay may be on the inside or outside of pipe.

#### NOTES:


- (1) Location for required test specimen removal (QW-453.).
- (2) Testing of circumferential hardfacing weld metal on pipe procedure qualification coupons may be limited to a single segment (completed utilizing the vertical, up-hill progression) for the chemical analysis, hardness, and macro-etch tests required in QW-453. Removal is required for a change from vertical down to vertical up-hill progression (but not vice-versa).
- (3) Location of test specimens shall be in accordance with the angular position limitations of QW-120.
- (4) When overlay welding is performed using machine or automatic welding and the vertical travel direction of adjacent weld beads is reversed on alternate passes, only one chemical analysis or hardness specimen is required to represent the vertical portion. Qualification is then restricted in production to require alternate pass reversal of rotation direction method.

QW-462.5(b) CHEMICAL ANALYSIS SPECIMEN, HARDFACING OVERLAY HARDNESS, AND MACRO TEST LOCATION(S) FOR CORROSION-RESISTANT AND HARDFACING WELD METAL OVERLAY

مهندس ثيما هنرمنديان

ł

## کروه مهندسین بین المللی جوش ایران/ ۱۳۷۹



مهندس ليما هترمنديان 

حق چاپ و تکثیر ، محفوظ و متعلق به شرکت کاوش همانش می باشد

دوره اموزشي ..... گروه مهندسين بين المللي جوش ايران/ ١٣٧٩



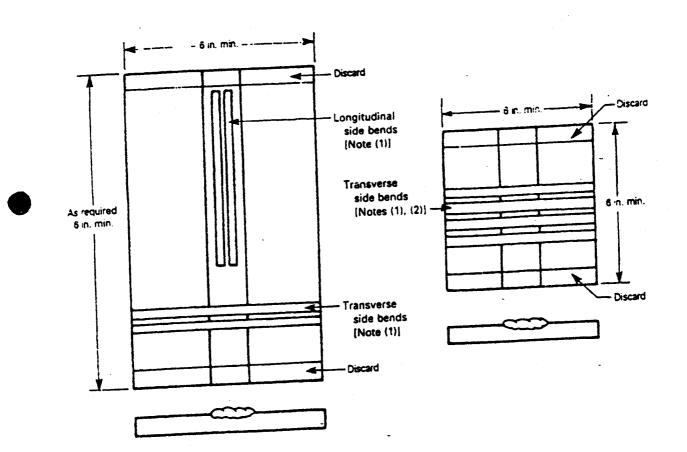
Vr

(in a

Ċ

آشنایی با تست و






کروہ مہندسین بین المللی جوش ایران

شرکت کاوش همایش

QW-46. 5(d)

WELDING DATA



- (1) Location for required test specimen removal Procedure (QW-453). Four side bend test specimens are required
- (2) Location for required test specimen removal --- Performance (QW-453). Two side bend test specimens are

required for each position.

QW-462.5(d) PLATE BEND SPECIMENS - CORROSION-RESISTANT WELD METAL OVERLAY



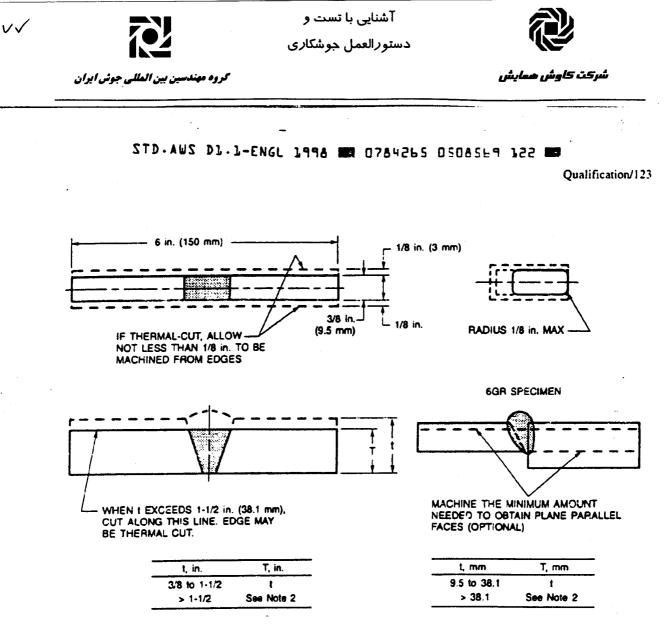
ا سنایی یا نست و دستو *ر*العمل جو شکاری



شرکت کاوش همایش

( )

€.


#### كروه مهندسين بين العللي جوش ايران STD.AWS D1.1-ENGL 1998 MM 0784265 0508568 296 MM 122/Qualification 3/8 3/8 3/8 1-1/2 A de la fre 6 MIN FACE ROOT BEND BEND 3/8 in. TEST PLATE TEST PLATE OVER 3/8 in. THICK (1) LONGITUDINAL BEND SPECIMEN RADIUS 1/8 MAX 6 MIN (SEE NOTE 1) w 3/8 NOTE 2 NOTE 3 T ł 3/8 MATERIAL TO BE REMOVED (PLATE) (PIPE) FOR CLEANUP FACE BEND SPECIMEN RADIUS 1/8 MAX 8 MIN (SEE NOTE 1)-NOTE 2 MATERIAL TO BE REMOVED 34 FOR CLEANUP f (PIPE) (PLATE) Ŧ NOTE 3 3/8 ir. mm ROOT BEND SPECIMEN 1/8 3 (2) TRANSVERSE BEND SPECIMEN 3/8 10 Dimensions 1 25 Test weldment Test specimen width, in. (W) 1-12 38 1-1/2 Plate 50 2 Test pipe or tube 1 75 3 4 in. (100 mm) in diameter 6 150 1-1/2 Test pipe or tube > 4 in. (100 mm) in diameter 200 8 Notes: 1. A longer specimen length may be necessary when using a wraparound type bending foture or when testing steel with a yield strength of 90 ksi (620 MPa) or more. 2. These edges may be thermal-cut and may or may not be machined. 3. The weld reinforcement and backing, if any, shall be removed flush with the surface of the specimen (see 5.24.4.1 and 5.24.4.2). If a recessed backing is used, this surface may be machined to a depth not exceeding the depth of the recess to remove the backing; in such a case, the thickness of the linished specimen shall be that specified above. Cut surfaces shall be smooth and parallel 4. T = plate or pipe thickness. 5. When the thickness of the test plate is less than 3/8 in. (9.5 mm), use the nominal thickness for face and root bends. Figure 4.12—Face and Root Bend Specimens (see 4.8.3.1)

فالمحادي المحمد المحمد الالمركي وال

والمعاجر ليد

صميمه ١٣

VЧ



Notes:

1. A longer specimen length may be necessary when using a wraparound-type bending fixture or when testing steel with a yield strength of 30 xsi (620 MPa) or more.

2. For plates over 1-1/2 in. (38.1 mm) thick, cut the specimen into approximately equal strips with T between 3/4 in. (19.0 mm) and 1-1/2 in. and test each strip.

3. t = plate or pipe thickness.

### Figure 4.13—Side Bend Specimens (see 4.8.3.1)

the bent portion of the specimen after testing. When using the wraparound jig, the specimen shall be firmly clamped on one end so that there is no sliding of the specimen during the bending operation. The weld and heat-affected zones shall be completely in the bent portion of the specimen after testing. Test specimens shall be removed from the jig when the outer roll has been moved 180° from the starting point.

4.8.3.2 Longitudinal Bead Specimene. When material combinations differ markedly in mechanical bending properties, as between two base materials or between the weld metal and the base metal. longitudinal bend tests (face and root) may be used in lieu of the transverse face and root bend tests. The welded test assemblies conforming to 4.8.2 shall have test specimens prepared by cutting the test plate as shown in Figures 4.10 or 4.11, whichever

» مهتدس نیما هنرمندیان

is applicable. The test specimens for the longitudinal bend test shall be prepared for testing as shown in Figure 4.12.

4.8.3.3 Acceptance Criteria for Bend Tests. The convex surface of the bend test specimen shall be visually examined for surface discontinuities. For acceptance, the surface shall contain no discontinuities exceeding the following dimensions:

(1) 1/8 in. (3 mm) measured in any direction on the surface

(2) 3/8 in. (10 mm)—the sum of the greatest dimensions of all discontinuities exceeding 1/32 in. (1 mm), but less than or equal to 1/8 in. (3 mm)

(3) 1/4 in. (6 mm)—the maximum corner crack, except when that corner crack resulted from visible slag inclusion or other fusion type discontinuities, then the 1/8 in. (3 mm) maximum shall apply

دوره اموزشی

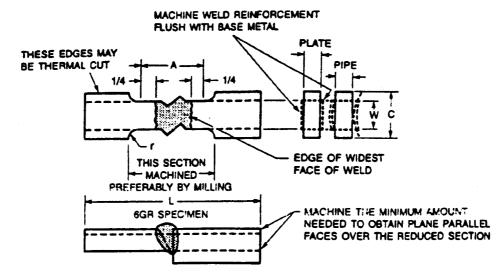
**گروه مهندسین بین المللی جوش ایران/ ۱۳۹۹** 



ا شنایی با نست و دستو *ر*العمل جو شکاری



کروہ مہندسین ہیں المللی جوش ایران


شرکت کاوش همایش

6

## STD.AWS D1.1-ENGL 1998 MM 0784265 D508570 944 MM

#### 124/Qualification

 $\sqrt{}$ 



Dimensions in inches							
		Test plate		Tes	st Pipe		
	Tp≤1 in.	1 < Tp < 1-1/2 in.	Tp ≥ 1-1/2 in.	2 in. & 3 in. diameter	6 in. & 8 in. diameter or larger job size pipe		
A-Length of reduced section	Widest face of weld + 1/2 in., 2-1/4 min			Widest face of weld + 1/2 in., 2-1/4 min			
L Overall length, min (Note 2)	As req	uired by testing equ	uipment	As required by testing equipment			
W-Width of reduced section (Notes 3, 4)	3/4 in. min	3/4 in. min	3/4 in. min	1/2 ± 0.01	3/4 in. min		
C-Width of grip section (Notes 4, 5)	W + 1/2 in. min	W + 1/2 in. min	W + 1/2 in. min	W + 1/2 in. min	W + 1/2 in. min		
t-Specimen thickness (Notes 6, 7)	Тр	Тр	Tp/n (Note 7)		isible with plane within length A		
r—Radius of fillet, min	1/2	1/2	1/2	1	1		

Notes:

1. Tp = Nominal Thickness of the Plate.

2. It is desirable, if possible, to make the length of the grip section large enough to allow the specimen to extend into the grips a distance equal to two-thirds or more of the length of the grips.

3. The ends of the reduced section shall not differ in width by more than 0.004 in. Also, there may be a gradual decrease in width from the ends to the center, but the width of either end shall not be more than 0.015 in. larger than the width at the center.

4. Narrower widths (W and C) may be used when necessary. In such cases, the width of the reduced section should be as large as the width of the material being tested permits. If the width of the material is less than W, the sides may be parallel throughout the length of the specimen.

5. For standard plate-type specimens, the ends of the specimen shall be symmetrical with the center line of the reduced section within 0.25 in.

6. The dimension t is the thickness of the specimen as provided for in the applicable material specifications. The minimum nominal thickness of 1-1/2 in, wide specimens shall be 3/16 in, except as permitted by the product specification.

7. For plates over 1-1/2 in thick, specimens may be cut into approximately equal strips. Each strip shall be at least 3/4 in, thick. The test results of each strip shall meet the minimum requirements.

8. Due to limited capacity of some tensile testing machines, the specimen dimensions for Annex M steels may be as agreed upon by the Engineer and the Fabricator.

## Figure 4.14—Reduced-Section Tension Specimens (see 4.8.3.4)

ضميمه ١٣

. . .

يودي سترجيه والعراق

. .....

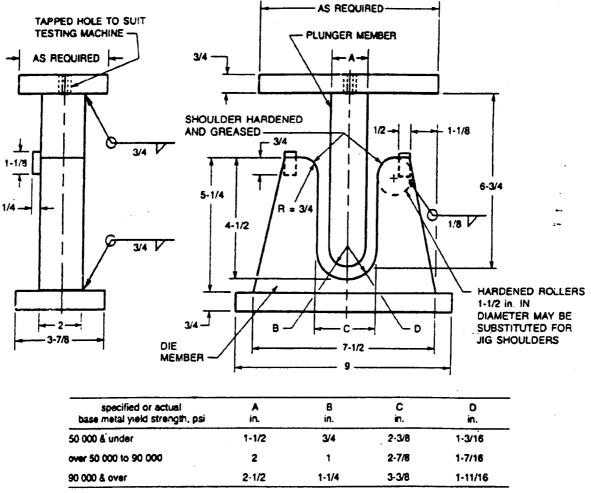
å.



آشنایی با تست و دستورالعمل جوشکاری



V a


l,

کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 ## 0784265 0508571 880 #

Qualification/125



Note: Plunger and interior die surfaces shall be machine-finished.

Figure 4.15—Guided Bend Test Jig (see 4.8.3)

Specimens with corner cracks exceeding 1/4 in. (6 mm) with no evidence of slag inclusions or other fusion type discontinuities shall be disregarded, and a replacement test specimen from the original weldment shall be tested.

4.8.3.4 Reduced-Section Tension Specimens (See Figure 4.14). Before testing, the least width and corresponding thickness of the reduced section shall be measured. The specimen shall be ruptured under tensile load, and the maximum load shall be determined. The crosssectional area shall be obtained by multiplying the width by the thickness. The tensile strength shall be obtained by dividing the maximum load by the cross-sectional area.

4.8.3.5 Acceptance Criteria for Reduced-Section Tension Test. The tensile strength shall be no less than the minimum of the specified tensile range of the base metal used.

**4.8.3.6** All-Weld-Metal Tension Specimen (See Figure 4.18). The test specimen shall be tested in accordance with ASTM A370, *Mechanical Testing of Steel Products*.

**4.8.4 Macroetch Test.** The weld test specimens shall be prepared with a finish suitable for macroetch examination. A suitable solution shall be used for etching to give a clear definition of the weld.

4.8.4.1 Acceptance Criteria for Macroetch Test. For acceptable qualification, the test specimen, when inspected visually, shall conform to the following requirements:

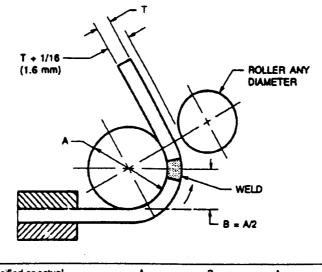


، سىيى با ىست و دستورالعمل جوشكارى



محروه مهندسین بین العللی جوش ایران

شرکت کاوش همایش


0

### STD.AVS D1.1-ENGL 1998 MM 0784265 0508572 717 MM

## 126/Qualification

N-

**1**.



specified or actual base metal yield strength, psi (MPa)	A in.	8 in.	A mm	B mm
50 000 (345) & under	1-1/2	3/4	38	19
over 50 000 to 90 000 (620)	2	1	50	25
90 000 & over	2-1/2	1-1/4	65	32

## Figure 4.16-Alternative Wraparound Guided Bend Test Jig (see 4.8.3)

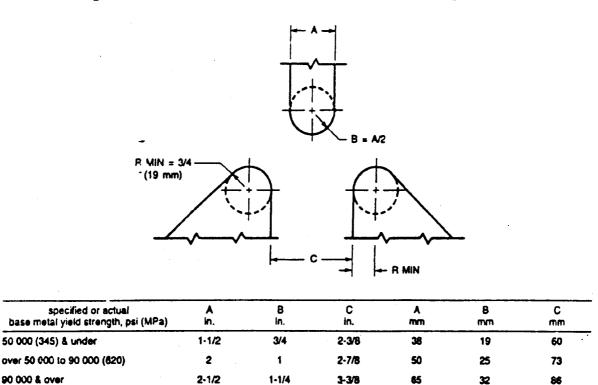



Figure 4.17—Alternative Roller-Equipped Guided Bend Test Jig for Bottom Ejection of Test Specimen (see 4.8.3)

ضميمة ١٣

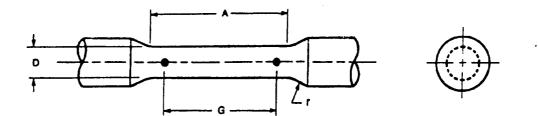


(...








شرکت کاوش همایش

دوره اموزشي

کروہ مہندسین بین المللی جوش ایران

## STD.AWS DJ.J-ENGL 1998 . 0784265 C508573 653 ....

Qualification.



	Dimensions in	inches	
	Standard specimen	Small-size specimens	proportional to standard
Nominal diameter	0.500 in. round	0.350 in. round	0.250 in. round
G-Gage length	2.000 ± 0.005	1.400 ± 0.005	1.000 ± 0.005
D-Diameter (Note 1)	0.500 ± 0.010	$0.350 \pm 0.007$	0.250 ± 0.005
r-Radius of fillet, min	3/8	1/4	3/16
A—Length of reduced section. (Note 2), min	2-1/4	1-3/4	1-1/4

	Dimensions (metric version	n per ASTM E 8M)	
	Standard specimen	Small-size specimens	proportional to standard
Nominal diameter	12.5 mm round	9 mm round	6 mm round
G—Gage length	62.5 ± 0.1	45.0 ± 0.1	30.0 ± 0.1
D-Diameter (Note 1), mm	12.5 ± 0.2	9.0 ± 0 1	6.0 ± 0.1
r—Radius of fillet, mm, min	10	- 8	6
A-Length of reduced section, mm (Note 2), min	75	54	36

Notes:

مهتدس ليما هترمنديان

1. The reduced section may have a gradual taper from the ends toward the center, with the ends not more than one percent targer in diameter than the center (controlling dimension). 2. If desired, the length of the reduced section may be increased to accommodate an extensioneter of any convenient gage length.

Reference marks for the measurement of elongation should be spaced at the indicated gage length.

The gage length and fillets shall be as shown, but the ends may be of any form to fit the holders of the testing machine in such a way
that the load shall be axial. If the ends are to be held in wedge grips, it is desirable, if possible, to make the length of the grip section
great enough to allow the specimen to extend into the grips a distance equal to two-thirds or more of the length of the grips.

### Figure 4.18-All-Weld-Metal Tension Specimen (see 4.8.3.6)

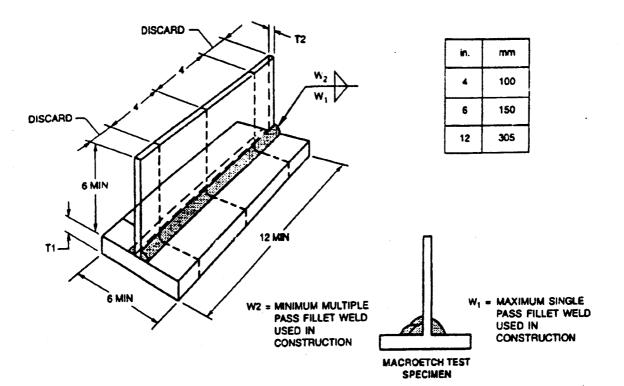


، سیایی با نست و دستورالعمل جو شکاری



شرکت کاوش همایش

0


C

. ....

**کروہ مہندسین بین المللی جوش ایران** 

STD.AUS DJ.J-ENGL 1998 🛲 0784265 0508576 362 🛲

130/Qualification



	INCHES			MILLIMETERS	
Weld size	T1 min*	T2 min*	- SiZe	T1 mm*	T2 min
3/16	1/2	3/16	5	12.7	4.8
1/4	3/4	1/4	6	19.0	5.4
5/16	1	5/16	8	25.4	8.0
3/8	1	3/8	10	25.4	9.5
1/2	1	1/2	13	25.4	12.7
5/B	1	5/8	16	25.4	15.9
3/4	1	3/4	19	25.4	19.0
> 3/4	1	1	> 19	25.4	25.4

"Note: Where the maximum plate thickness used in production is less than the value shown in the table, the maximum thickness of the production pieces may be substituted for T1 and T2.



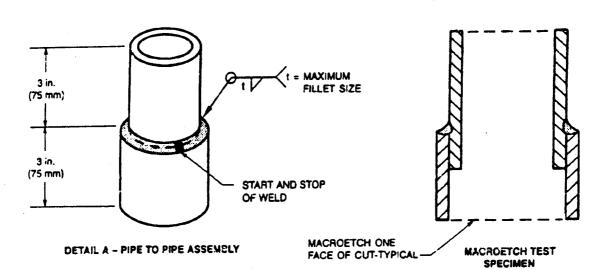
	-		
ضمیمه ۱۳			
دوره اموزشی		 	
حق جاب و تکثیر . محفوظ و متعلق به شرکت کاوش همایش مئ ماشد			

λ(



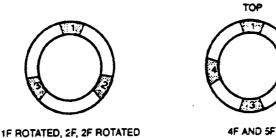
آشنایی با تست و



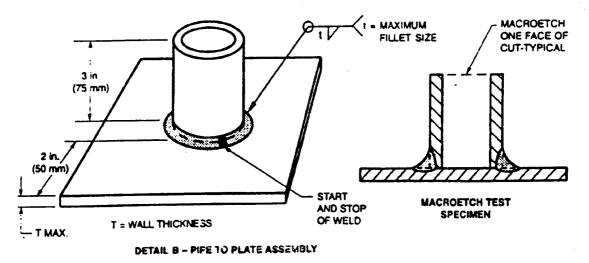



شرکت کاوش همایش

كروه مهندسين بين العللي جوش ايران


## STD.AUS D1.1-ENGL 1998 🗰 0784265 0508577 279

Qualification/133




SEE TABLE 4.1 FOR POSITION REQUIREMENTS

NOTE: PIPE SHALL BE OF SUFFICIENT THICKNESS TO PREVENT MELT-THROUGH.



LOCATION OF TEST SPECIMENS ON WELDED PIPE - WPS QUALIFICATION



SEE TABLE 4.1 FOR POSITION REQUIREMENTS NOTE: PIPE SHALL BE OF SUFFICIENT THICKNESS TO PREVENT MELT-THROUGH. ALL DIMENSIONS ARE MINIMUMS.

Figure 4.20-Pipe Fillet Weld Soundness Test-WPS Qualification (see 4.11.2)

مهندين ليما هنرمنديان گروه مهندسین بین المللی جوش ایران/ ۱۳۷۹ دوره اموزشی and the second at a second second . اشد

NC

60

ŧ.



، سیایی با نسب و دستورالعمل جو شکاری



کروہ مہندسین ہین المللی جوش ایران

شرکت کاوش همایش

£

6

## STD.AWS D1.1-ENGL 1998 📟 0784265 D508578 135 🎟

#### 132/Qualification

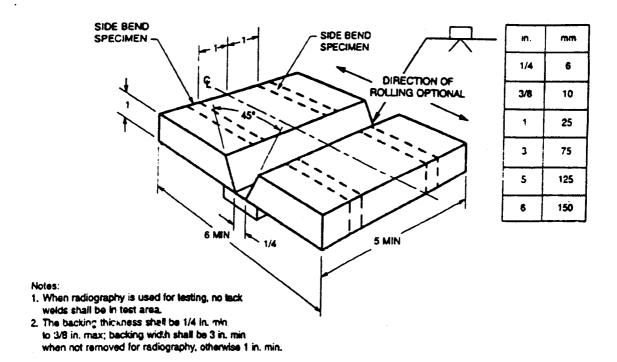
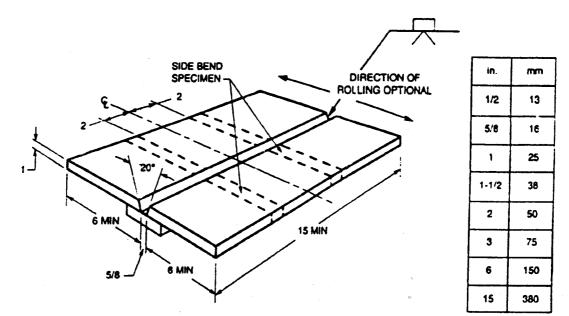




Figure 4.21—Test Plate for Unlimited Thickness—Welder Qualification (see 4.23.1)



#### Notes:

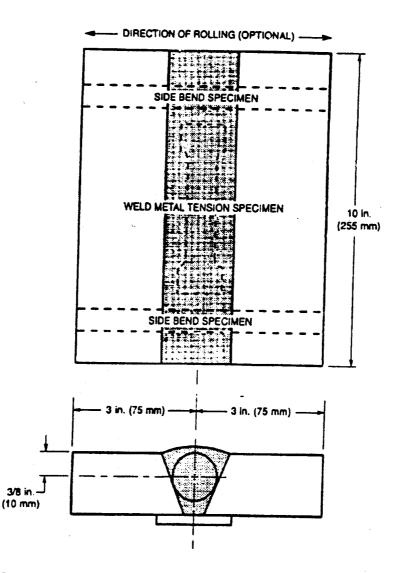
- 1. When radiography is used for testing, no tack welds shall be in test area.
- 2. The joint configuration of a qualified WPS may be used in lieu of the groove configuration shown here.
- 3. The backing thickness shall be 3/8 in. min to 1/2 in. max, backing width shall
  - be 3 in. min when not removed for radiography, otherwise 1-1/2 in. min.

### Figure 4.22—Test Plate for Unlimited Thickness— Welding Operator Qualification (see 4.23.2)

ضميمه ١٣



ا شنایی با تست و




کروہ مہندسین ہیں المللی جوش ایران

شرکت کاوش همایش

STD.AWS D1.1-ENGL 1998 MM 0784265 0508579 071 MM

Qualification/133



## Figure 4.23—Location of Test Specimen on Welded Test Plate 1 in. (25.4 mm) Thick— Consumables Verification for Fillet Weld WPS Qualification (see 4.11.3)

(b) The narrowest root opening to be used with a 37.5° groove angle: one test welded in the flat position and one test welded in the overhead position.

(c) The widest root opening to be used with a 37.5° groove angle: one test to be welded in the flat position and one test to be welded in the overhead position.

(d) for matched box connections only, the minimem groove angle, corner dimension and corner radius to be used in combination: one test in horizontal position.

(3) The macroetch test specimens required in (1) and(2) above shall be examined for discontinuities and shall have:

(a) No cracks

(b) Thorough fusion between adjacent layers of weld metal and between weld metal and base metal

(c) Weld details conforming to the specified detail but with none of the variations prohibited in 5.24.

(d) No undercut exceeding the values permitted in 6.9.

(e) For porosity 1/32 in. (1 mm) or larger, accumulated porosity shall not exceed 1/4 in. (6 mm)

(f) No accumulated slag, the sum of the greatest dimension of which shall not exceed 1/4 in. (6 mm)

Those specimens not conforming to (a) through (f) shall be considered unacceptable; (b) through (f) not applicable to backup weld.

4.12.4.2 Complete Joint Penetration Groove Welds in a T-, Y-, or K-Connection WPS with Dihedral Angles Less than 30°. The sample joint described

Ĉ



، سەيى با ىست و دستو*ر*العمل جوشکاری



شرکت کاوش همایش

Ĉ

C

Q

•

. 1

٠.

N4

٦

0	]			WEI	DIN	g da	TA				QW-
	++			-	00T-MA	• ~	•			:	
			f Tests Required Md Tests) [Note (4	Face Bend	- 4m-100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2			wable exceptions.	
	Itens		Type and Number of Tests Required (Tension and Guided-Bend Tests) [Note (4)]	Side Bend		Note (3)	Note (3)	4 4	<b>•</b>	4 (.2, .3, .4) for allo	
	s and Test Speel	ERSE-BEND TESTS	(Ten	Tension QW-150	12	2	2	2 (5) 2 (5)	2 (5)	d. Also, see QW-2C2 and over.	-
	QW-450 SPECIMENS Procedure Qualification Thickness Limits and Test Specimens	ELD TENSION TESTS AND TRANSVERSE-BEND TESTS	Thickness <i>t</i> of Deposited Weld Metal Qualified, in. [Notes (1) and (4)]	Max.	21 03° 15	21	21	21 when $f < 3/_{A}$ 2 T when $f \ge 3/_{A}$	21 when $t < 3/_4$ B (2) when $t > 3/_4$	Tes: 2.13. 4, .9, .10), QW-404.32, and QW-407.4 for further limits on range of thickness qualified. Also, see QW-2C2 (.2, .3, .4) for allowable exceptions. For the welding processes of QW-403.7 only; otherwise per Note (1) or 27, or 24 whichever is applicable. Four side-bend tests may be substituted for the required face- and root-bend tests, when thickness 7 is 7/ ₆ in. and over. See QW-151 (.1, .2, .3) for details on multiple specimens when coupon thickness are over 1 in.	
	QW-451 Procedury	GROOVE-WELD 1	hickness T Qualified, in. and (4)]	Max.	27 - > 1 Sat 60	2 T ,	27	21 21	8 (2) 8 (2)	nd QW-407.4 for fur herwise per Note (1) required face- and ro 200.4. specimens when coup	-
	QW	_	Range of Thickness T of Base Metal Qualified, in. [Notes (1) and (4)]	Min.	F	1/14	, 91 /C	41/6 41/6	مد ^{رد} مد ^{رد}	.10), QW-404.32, a f QW-403.7 only; ou substituted for the r procesures, see QW- details on multiple a	
			plate Bist V. Cre	Thickness <i>T</i> of Test Coupon Welded, In.	Less than 1/14	^{1/1} 4 to ³ / ₆ incl.	Over $3/_{\rm sc}$ but less than $3/_{\rm s}$	$3/_{4}$ to less than $1^{1}/_{2}$ to less than $1^{1}/_{2}$	$1^{1}/_{2}$ and over $1^{1}/_{2}$ and over	NOTES: (1) See QW-403 (.2, .3, .4, .9, .10), QW-404.32, and QW-407.4 (2) For the welding processes of QW-403.7 only; otherwise per N (3) Four side-bend tests may be substituted for the required face- (4) For combination of welding procesures, see QW-200.4. (5) See QW-151 (.1, .2, .3) for details on multiple specimens who	

ضميمه ۱۴

÷

~,



( . .

0

4









..

شرکت کاوش هماب

کروہ مہندسین بین العللی جوش ایران

QW-451.2

	Range of Thickness T of Base Metal Qualified, [Notes (1) and (2)]	Range of Thickness T Base Metal Qualified, In. [Notes (1) and (2)]	Deposited Weld Metal Qualified, in. [Notes (1) and (2)]	тур Т.	Type and Number of Tests Required (Tension and Guided-Bend Tests) [Note (2)]	tuired ests)
Thickness <i>T</i> of Test Coupon Weided, in.	Min.	Max.	Max.	Tension QW-150	Face Bend QW-160	Reat Bend QW-160
Less than ¹ / ₁₆	1	27	21	2	2	2
¹ / ₁₄ to ² / <b>e</b> incl.	1/16	27	21	7	2	~
Over 3/6	s1/s	27	21	2	2	7

QW-451.2 GROOVE-WELD TENSION TESTS AND LONGITUDINAL-BEND TESTS

8 8

(2) For combination of welding procedures, see QW-200.4.

مهندس ليما هنرمنديان





ا ستایی با نست و دستو/العمل جو شکاری



شرکت کاوش همایش

کروہ مہندسین بین العللی جوش ایران

QW-452

QW-452.1 1998 SECTION IX QW-462.3(a) [Note (5)] Root Beid **Type and Number of** (Guided-Bend Tests) [Notes (3), (4), (8)] **Tests Required** Face Bend QW-462.3(a) two, or more welders, the thickness t of the deposited weld metal for each welder with each process shall be determined Two or more pipe test coupons of different thicknesses may be used to determine the deposited weld metal thickness qualified and that Thickness of test coupon of 1/2 in. or over shull be used for qualifying a combination of three or more weiders each of which may use the To qualify for positions 5G and 6G, as prescribed in QW-302.3, two root and two face-bend specimens or four side bend specimens, as QW-452 Pet formance Qualification Thickness Limits and Test Specimens thickness may be applied to production weids to the smallest diameter for which the weider is qualified in accordance with QW-452.3. Side Bend QW-462.2 Nute (6) Note (7) For a ³/₆ in. thick coupon, a side-bend test may be substituted for each of the required face- and root-bend tests. ~ **TRANSVERSE-BEND TESTS** QW-452.1 Qualified, In. [Note (2)] **Deposited Weld Metal** Test coupon weld deposit shall also consist of a minimum of three layers of weld metal zt Max. to be welded A side-bend test may be substituted for each of the required face- and root-bend tests. (See QW-310.1) Thickness f of Max. Face- and root-bend tests may be used to qualify a combination test of: 2 two welders using the same or a different welding process. Test coupons shall be visually examined per QW-302.4. applicable to the test coupon thickness, are required. one welder using two welding processes; or Weided, in. [Note (1)] and used individually in the Thickness column. ^{1/2} and over [Note (9)] Thickness of Test Coupon same or a different weiding process. Up to '/e, Incl. Over 1/6 (1) When using one, NOTES: 3 e Type of Groove Groove Groom Ĩ E 3693 3 9 3 ضميمه ۱۴

مهندس نيما هنرمنديان

كروه مهندسين بين الطلي جوش إيران/ ١٣٣٠

مق جاب و تکثیر ، محفوظ و متعلق به شرکت کارتی همایش ا

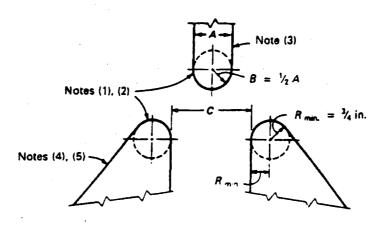
دوره اموزشی





آشنایی با تست و

دستورالعمل جوشكاري




شرکت کاوش همایش

*کروہ مہندسین ہین المللی جوش ایران* 

WELDING DATA

QW-466.2



GENERAL NOTE: See QW-466.1 for jig dimensions and general notes.

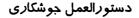
NOTES:

- (1) Either hardened and greased shoulders or hardened rollers free to rotate shall be used.
- (2) The shoulders or rollers shall have a minimum bearing surface of 2 in. for placement of the specimen. The rollers shall be high enough above the bottom of the jig so that the specimens will clear the rollers when the ram is in the low position.
- (3) The ram shall be fitted with an appropriate base and provision made for attachment to the testing machine, and shall be of a sufficiently rigid design to prevent deflection and misalignment while making the bend test. The body of the ram may be less than the dimensions shown in column A of QW-466.1.
- (4) If desired, either the rollers or the roller supports may be made adjustable in the horizontal direction so that specimens of t thickness may be tested on the same jig.
- (5) The roller supports shall be fitted with an appropriate base designed to safeguard against deflection or misalignment and equipped with means for maintaining the rollers centered midpoint and aligned with respect to the ram.

#### QW-466.2 GUIDED-BEND ROLLER JIG

مهندس نينا هنرمنديان

كروه مهندسين بين المللي جوش ايران/ ١٣٧٩


باشد

حة حاب و تكثب ، مُحقَّمُنا و متعلَّم به شاكت كاوش همانش ام



كروه مهندسين بين المللي جوش ايران

آشنایی با تست و





شرکت کاوش همایش

....

#### QW-424 Base Metals Used for Procedure Qualification

Base Metal(s) Used for Procedure Qualification Coupon

Base Metals Qualified

One metal from a P-Number to any metal from the same P-Number

One metal from a P-Number to any metal from any other P-Number

One metal from P-No. 3 to any metal from P-No. 3

One metal from P-No. 4 to any metal from P-No. 4

One metal from P-No. 5A to any metal from P-No. 5A

- One metal from P-No. 5A to a metal from P-No. 4, or P-No. 3, or P-No. 1
- One metal from P-No. 4 to a metal from P-No. 3 or P-No. 1
- Any unassigned metal to the same unassigned metal
- Any unassigned metal to any P-Number metal
- Any unassigned metal to any other unassigned metal

Any metals assigned that P-Number

Any metal assigned the first P-Number to any metal assigned the second P-Number

Any P-No.3 metal to any metal from P-No. 3 or P-No. 1

- Any P-No. 4 metal to any metal from P-Nos. 4, 3, or 1
- Any P-No. 5A metal to any metal from P-Nos. 5A, 4, 3, or 1 metals

Any P-No. 5A metal to any metal assigned to P-No. 4, or P-No. 3, or P-No. 1

Any P-No. 4 metal to any metal assigned to P-No. 3 or P-No. 1

The unassigned metal to itself

The unassigned metal to any metal assigned to the same P-Number as the qualified metal The first unassigned metal to the second unassigned metal

ضمیمه ۱۶

گروہ مہندسین بین المللی چوش ایران / ۱۳۷۹ گروہ مہندس نے مہندس نے المل

دوره أموزشي